cytoBandIdeo Chromosome Band (Ideogram) Chromosome Bands Based On ISCN Lengths (for Ideogram) Mapping and Sequencing cons13way Conservation Multiz Alignment & Conservation (13 species) Comparative Genomics Downloads for data in this track are available: Multiz alignments (MAF format), and phylogenetic trees PhyloP conservation (WIG format) PhastCons conservation (WIG format) Description This track shows multiple alignments of 13 vertebrate species and measurements of evolutionary conservation using two methods (phastCons and phyloP) from the PHAST package, for all species. The multiple alignments were generated using multiz and other tools in the UCSC/Penn State Bioinformatics comparative genomics alignment pipeline. Conserved elements identified by phastCons are also displayed in this track. PhastCons is a hidden Markov model-based method that estimates the probability that each nucleotide belongs to a conserved element, based on the multiple alignment. It considers not just each individual alignment column, but also its flanking columns. By contrast, phyloP separately measures conservation at individual columns, ignoring the effects of their neighbors. As a consequence, the phyloP plots have a less smooth appearance than the phastCons plots, with more "texture" at individual sites. The two methods have different strengths and weaknesses. PhastCons is sensitive to "runs" of conserved sites, and is therefore effective for picking out conserved elements. PhyloP, on the other hand, is more appropriate for evaluating signatures of selection at particular nucleotides or classes of nucleotides (e.g., third codon positions, or first positions of miRNA target sites). Another important difference is that phyloP can measure acceleration (faster evolution than expected under neutral drift) as well as conservation (slower than expected evolution). In the phyloP plots, sites predicted to be conserved are assigned positive scores (and shown in blue), while sites predicted to be fast-evolving are assigned negative scores (and shown in red). The absolute values of the scores represent -log p-values under a null hypothesis of neutral evolution. The phastCons scores, by contrast, represent probabilities of negative selection and range between 0 and 1. Both phastCons and phyloP treat alignment gaps and unaligned nucleotides as missing data, and both were run with the same parameters. UCSC has repeatmasked and aligned all genome assemblies, and provides all the sequences for download. For genome assemblies not available in the genome browser, there are alternative assembly hub genome browsers. Missing sequence in any assembly is highlighted in the track display by regions of yellow when zoomed out and by Ns when displayed at base level (see Gap Annotation, below). OrganismSpeciesRelease dateUCSC versionAlignment type ChickenGallus gallusNov 2011ICGSC Gallus_gallus-4.0/galGal4Net ChimpPan troglodytesFeb 2011CSAC 2.1.4/panTro4Syntenic net CowBos taurusOct 2011Baylor Btau_4.6.1/bosTau7Syntenic net DogCanis lupus familiarisSep 2011Broad CanFam3.1/canFam3Syntenic net Guinea pigCavia porcellusFeb 2008Broad/cavPor3Syntenic net HumanHomo sapiensDec 2013GRCh38/hg38Syntenic net MouseMus musculusDec 2011GRCm38/mm10Syntenic net OpossumMonodelphis domesticaOct 2006Broad/monDom5Net PandaAiluropoda melanoleucaDec 2009BGI-Shenzhen 1.0/ailMel1Reciprocal best net RatRattus norvegicusMar 2012RGSC 5.0/rn5Reference species RhesusMacaca mulattaOct 2010BGI CR_1.0/rheMac3Syntenic net TurkeyMeleagris gallopavoDec 2009TGC Turkey_2.01/melGal1Net ZebrafishDanio rerioJul 2010Zv9/danRer7Net Table 1. Genome assemblies included in the 13-way Conservation track. Display Conventions and Configuration In full and pack display modes, conservation scores are displayed as a wiggle track (histogram) in which the height reflects the size of the score. The conservation wiggles can be configured in a variety of ways to highlight different aspects of the displayed information. Click the Graph configuration help link for an explanation of the configuration options. Pairwise alignments of each species to the rat genome are displayed below the conservation histogram as a grayscale density plot (in pack mode) or as a wiggle (in full mode) that indicates alignment quality. In dense display mode, conservation is shown in grayscale using darker values to indicate higher levels of overall conservation as scored by phastCons. Checkboxes on the track configuration page allow selection of the species to include in the pairwise display. Note that excluding species from the pairwise display does not alter the the conservation score display. To view detailed information about the alignments at a specific position, zoom the display in to 30,000 or fewer bases, then click on the alignment. Gap Annotation The Display chains between alignments configuration option enables display of gaps between alignment blocks in the pairwise alignments in a manner similar to the Chain track display. The following conventions are used: Single line: No bases in the aligned species. Possibly due to a lineage-specific insertion between the aligned blocks in the rat genome or a lineage-specific deletion between the aligned blocks in the aligning species. Double line: Aligning species has one or more unalignable bases in the gap region. Possibly due to excessive evolutionary distance between species or independent indels in the region between the aligned blocks in both species. Pale yellow coloring: Aligning species has Ns in the gap region. Reflects uncertainty in the relationship between the DNA of both species, due to lack of sequence in relevant portions of the aligning species. Genomic Breaks Discontinuities in the genomic context (chromosome, scaffold or region) of the aligned DNA in the aligning species are shown as follows: Vertical blue bar: Represents a discontinuity that persists indefinitely on either side, e.g. a large region of DNA on either side of the bar comes from a different chromosome in the aligned species due to a large scale rearrangement. Green square brackets: Enclose shorter alignments consisting of DNA from one genomic context in the aligned species nested inside a larger chain of alignments from a different genomic context. The alignment within the brackets may represent a short misalignment, a lineage-specific insertion of a transposon in the rat genome that aligns to a paralogous copy somewhere else in the aligned species, or other similar occurrence. Base Level When zoomed-in to the base-level display, the track shows the base composition of each alignment. The numbers and symbols on the Gaps line indicate the lengths of gaps in the rat sequence at those alignment positions relative to the longest non-rat sequence. If there is sufficient space in the display, the size of the gap is shown. If the space is insufficient and the gap size is a multiple of 3, a "*" is displayed; other gap sizes are indicated by "+". Codon translation is available in base-level display mode if the displayed region is identified as a coding segment. To display this annotation, select the species for translation from the pull-down menu in the Codon Translation configuration section at the top of the page. Then, select one of the following modes: No codon translation: The gene annotation is not used; the bases are displayed without translation. Use default species reading frames for translation: The annotations from the genome displayed in the Default species to establish reading frame pull-down menu are used to translate all the aligned species present in the alignment. Use reading frames for species if available, otherwise no translation: Codon translation is performed only for those species where the region is annotated as protein coding. Use reading frames for species if available, otherwise use default species: Codon translation is done on those species that are annotated as being protein coding over the aligned region using species-specific annotation; the remaining species are translated using the default species annotation. Codon translation uses the following gene tracks as the basis for translation: Gene TrackSpecies UCSC GenesHuman, Mouse RefSeq GenesCow, Rat, Rhesus, Zebrafish Ensembl Genes v75Chicken, Chimp, Dog, Guinea Pig, Opossum, Panda, Turkey Table 2. Gene tracks used for codon translation. Methods Pairwise alignments with the rat genome were generated for each species using lastz from repeat-masked genomic sequence. Pairwise alignments were then linked into chains using a dynamic programming algorithm that finds maximally scoring chains of gapless subsections of the alignments organized in a kd-tree. The scoring matrix and parameters for pairwise alignment and chaining were tuned for each species based on phylogenetic distance from the reference. High-scoring chains were then placed along the genome, with gaps filled by lower-scoring chains, to produce an alignment net. For more information about the chaining and netting process and parameters for each species, see the description pages for the Chain and Net tracks. An additional filtering step was introduced in the generation of the 13-way conservation track to reduce the number of paralogs and pseudogenes from the high-quality assemblies and the suspect alignments from the low-quality assemblies: the pairwise alignments of high-quality sequences were filtered based on synteny; those for 2X mammalian genomes were filtered to retain only alignments of best quality in both the target and query ("reciprocal best"). The resulting best-in-genome pairwise alignments were progressively aligned using multiz/autoMZ, following the tree topology diagrammed above, to produce multiple alignments. The multiple alignments were post-processed to add annotations indicating alignment gaps, genomic breaks, and base quality of the component sequences. The annotated multiple alignments, in MAF format, are available for bulk download. An alignment summary table containing an entry for each alignment block in each species was generated to improve track display performance at large scales. Framing tables were constructed to enable visualization of codons in the multiple alignment display. Phylogenetic Tree Model Both phastCons and phyloP are phylogenetic methods that rely on a tree model containing the tree topology, branch lengths representing evolutionary distance at neutrally evolving sites, the background distribution of nucleotides, and a substitution rate matrix. The all-species tree model for this track was generated using the phyloFit program from the PHAST package (REV model, EM algorithm, medium precision) using multiple alignments of 4-fold degenerate sites extracted from the 100-way alignment (msa_view). The 4d sites were derived from the RefSeq (Reviewed+Coding) gene set, filtered to select single-coverage long transcripts. This same tree model was used in the phyloP calculations; however, the background frequencies were modified to maintain reversibility. The resulting tree model: all species. PhastCons Conservation The phastCons program computes conservation scores based on a phylo-HMM, a type of probabilistic model that describes both the process of DNA substitution at each site in a genome and the way this process changes from one site to the next (Felsenstein and Churchill 1996, Yang 1995, Siepel and Haussler 2005). PhastCons uses a two-state phylo-HMM, with a state for conserved regions and a state for non-conserved regions. The value plotted at each site is the posterior probability that the corresponding alignment column was "generated" by the conserved state of the phylo-HMM. These scores reflect the phylogeny (including branch lengths) of the species in question, a continuous-time Markov model of the nucleotide substitution process, and a tendency for conservation levels to be autocorrelated along the genome (i.e., to be similar at adjacent sites). The general reversible (REV) substitution model was used. Unlike many conservation-scoring programs, phastCons does not rely on a sliding window of fixed size; therefore, short highly-conserved regions and long moderately conserved regions can both obtain high scores. More information about phastCons can be found in Siepel et al. 2005. The phastCons parameters used were: expected-length=45, target-coverage=0.3, rho=0.3. PhyloP Conservation The phyloP program supports several different methods for computing p-values of conservation or acceleration, for individual nucleotides or larger elements ( http://compgen.cshl.edu/phast/). Here it was used to produce separate scores at each base (--wig-scores option), considering all branches of the phylogeny rather than a particular subtree or lineage (i.e., the --subtree option was not used). The scores were computed by performing a likelihood ratio test at each alignment column (--method LRT), and scores for both conservation and acceleration were produced (--mode CONACC). Conserved Elements The conserved elements were predicted by running phastCons with the --most-conserved option. The predicted elements are segments of the alignment that are likely to have been "generated" by the conserved state of the phylo-HMM. Each element is assigned a log-odds score equal to its log probability under the conserved model minus its log probability under the non-conserved model. The "score" field associated with this track contains transformed log-odds scores, taking values between 0 and 1000. (The scores are transformed using a monotonic function of the form a * log(x) + b.) The raw log odds scores are retained in the "name" field and can be seen on the details page or in the browser when the track's display mode is set to "pack" or "full". Credits This track was created using the following programs: Alignment tools: lastz (formerly blastz) and multiz by Minmei Hou, Scott Schwartz and Webb Miller of the Penn State Bioinformatics Group Chaining and Netting: axtChain, chainNet by Jim Kent at UCSC Conservation scoring: phastCons, phyloP, phyloFit, tree_doctor, msa_view and other programs in PHAST by Adam Siepel at Cold Spring Harbor Laboratory (original development done at the Haussler lab at UCSC). MAF Annotation tools: mafAddIRows by Brian Raney, UCSC; mafAddQRows by Richard Burhans, Penn State; genePredToMafFrames by Mark Diekhans, UCSC Tree image generator: phyloPng by Galt Barber, UCSC Conservation track display: Kate Rosenbloom, Hiram Clawson (wiggle display), and Brian Raney (gap annotation and codon framing) at UCSC The phylogenetic tree is based on Murphy et al. (2001) and general consensus in the vertebrate phylogeny community. Thanks to Giacomo Bernardi for help with the fish relationships. References Phylo-HMMs, phastCons, and phyloP: Felsenstein J, Churchill GA. A Hidden Markov Model approach to variation among sites in rate of evolution. Mol Biol Evol. 1996 Jan;13(1):93-104. PMID: 8583911 Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A. Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res. 2010 Jan;20(1):110-21. PMID: 19858363; PMC: PMC2798823 Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, Clawson H, Spieth J, Hillier LW, Richards S, et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 2005 Aug;15(8):1034-50. PMID: 16024819; PMC: PMC1182216 Siepel A, Haussler D. Phylogenetic Hidden Markov Models. In: Nielsen R, editor. Statistical Methods in Molecular Evolution. New York: Springer; 2005. pp. 325-351. Yang Z. A space-time process model for the evolution of DNA sequences. Genetics. 1995 Feb;139(2):993-1005. PMID: 7713447; PMC: PMC1206396 Chain/Net: Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D. Evolution's cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11484-9. PMID: 14500911; PMC: PMC208784 Multiz: Blanchette M, Kent WJ, Riemer C, Elnitski L, Smit AF, Roskin KM, Baertsch R, Rosenbloom K, Clawson H, Green ED, et al. Aligning multiple genomic sequences with the threaded blockset aligner. Genome Res. 2004 Apr;14(4):708-15. PMID: 15060014; PMC: PMC383317 Lastz (formerly Blastz): Chiaromonte F, Yap VB, Miller W. Scoring pairwise genomic sequence alignments. Pac Symp Biocomput. 2002:115-26. PMID: 11928468 Harris RS. Improved pairwise alignment of genomic DNA. Ph.D. Thesis. Pennsylvania State University, USA. 2007. Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, Haussler D, Miller W. Human-mouse alignments with BLASTZ. Genome Res. 2003 Jan;13(1):103-7. PMID: 12529312; PMC: PMC430961 Phylogenetic Tree: Murphy WJ, Eizirik E, O'Brien SJ, Madsen O, Scally M, Douady CJ, Teeling E, Ryder OA, Stanhope MJ, de Jong WW, Springer MS. Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science. 2001 Dec 14;294(5550):2348-51. PMID: 11743200 cons13wayViewalign Multiz Alignments Multiz Alignment & Conservation (13 species) Comparative Genomics multiz13way Multiz Align Multiz Alignments & Conservation (13 species) Comparative Genomics cons13wayViewphastcons Element Conservation (phastCons) Multiz Alignment & Conservation (13 species) Comparative Genomics phastCons13way phastCons Cons Conservation by PhastCons (13 species) Comparative Genomics cons13wayViewelements Conserved Elements Multiz Alignment & Conservation (13 species) Comparative Genomics phastConsElements13way Cons. Elem. Conserved Elements (13 species) Comparative Genomics cons13wayViewphyloP Basewise Conservation (phyloP) Multiz Alignment & Conservation (13 species) Comparative Genomics phyloP13way PhyloP Cons Basewise Conservation by PhyloP (13 species) Comparative Genomics cpgIslandExt CpG Islands CpG Islands (Islands < 300 Bases are Light Green) Expression and Regulation Description CpG islands are associated with genes, particularly housekeeping genes, in vertebrates. CpG islands are typically common near transcription start sites and may be associated with promoter regions. Normally a C (cytosine) base followed immediately by a G (guanine) base (a CpG) is rare in vertebrate DNA because the Cs in such an arrangement tend to be methylated. This methylation helps distinguish the newly synthesized DNA strand from the parent strand, which aids in the final stages of DNA proofreading after duplication. However, over evolutionary time, methylated Cs tend to turn into Ts because of spontaneous deamination. The result is that CpGs are relatively rare unless there is selective pressure to keep them or a region is not methylated for some other reason, perhaps having to do with the regulation of gene expression. CpG islands are regions where CpGs are present at significantly higher levels than is typical for the genome as a whole. The unmasked version of the track displays potential CpG islands that exist in repeat regions and would otherwise not be visible in the repeat masked version. By default, only the masked version of the track is displayed. To view the unmasked version, change the visibility settings in the track controls at the top of this page. Methods CpG islands were predicted by searching the sequence one base at a time, scoring each dinucleotide (+17 for CG and -1 for others) and identifying maximally scoring segments. Each segment was then evaluated for the following criteria: GC content of 50% or greater length greater than 200 bp ratio greater than 0.6 of observed number of CG dinucleotides to the expected number on the basis of the number of Gs and Cs in the segment The entire genome sequence, masking areas included, was used for the construction of the track Unmasked CpG. The track CpG Islands is constructed on the sequence after all masked sequence is removed. The CpG count is the number of CG dinucleotides in the island. The Percentage CpG is the ratio of CpG nucleotide bases (twice the CpG count) to the length. The ratio of observed to expected CpG is calculated according to the formula (cited in Gardiner-Garden et al. (1987)): Obs/Exp CpG = Number of CpG * N / (Number of C * Number of G) where N = length of sequence. The calculation of the track data is performed by the following command sequence: twoBitToFa assembly.2bit stdout | maskOutFa stdin hard stdout \ | cpg_lh /dev/stdin 2> cpg_lh.err \ | awk '{$2 = $2 - 1; width = $3 - $2; printf("%s\t%d\t%s\t%s %s\t%s\t%s\t%0.0f\t%0.1f\t%s\t%s\n", $1, $2, $3, $5, $6, width, $6, width*$7*0.01, 100.0*2*$6/width, $7, $9);}' \ | sort -k1,1 -k2,2n > cpgIsland.bed The unmasked track data is constructed from twoBitToFa -noMask output for the twoBitToFa command. Data access CpG islands and its associated tables can be explored interactively using the REST API, the Table Browser or the Data Integrator. All the tables can also be queried directly from our public MySQL servers, with more information available on our help page as well as on our blog. The source for the cpg_lh program can be obtained from src/utils/cpgIslandExt/. The cpg_lh program binary can be obtained from: http://hgdownload.soe.ucsc.edu/admin/exe/linux.x86_64/cpg_lh (choose "save file") Credits This track was generated using a modification of a program developed by G. Miklem and L. Hillier (unpublished). References Gardiner-Garden M, Frommer M. CpG islands in vertebrate genomes. J Mol Biol. 1987 Jul 20;196(2):261-82. PMID: 3656447 cpgIslandSuper CpG Islands CpG Islands (Islands < 300 Bases are Light Green) Expression and Regulation Description CpG islands are associated with genes, particularly housekeeping genes, in vertebrates. CpG islands are typically common near transcription start sites and may be associated with promoter regions. Normally a C (cytosine) base followed immediately by a G (guanine) base (a CpG) is rare in vertebrate DNA because the Cs in such an arrangement tend to be methylated. This methylation helps distinguish the newly synthesized DNA strand from the parent strand, which aids in the final stages of DNA proofreading after duplication. However, over evolutionary time, methylated Cs tend to turn into Ts because of spontaneous deamination. The result is that CpGs are relatively rare unless there is selective pressure to keep them or a region is not methylated for some other reason, perhaps having to do with the regulation of gene expression. CpG islands are regions where CpGs are present at significantly higher levels than is typical for the genome as a whole. The unmasked version of the track displays potential CpG islands that exist in repeat regions and would otherwise not be visible in the repeat masked version. By default, only the masked version of the track is displayed. To view the unmasked version, change the visibility settings in the track controls at the top of this page. Methods CpG islands were predicted by searching the sequence one base at a time, scoring each dinucleotide (+17 for CG and -1 for others) and identifying maximally scoring segments. Each segment was then evaluated for the following criteria: GC content of 50% or greater length greater than 200 bp ratio greater than 0.6 of observed number of CG dinucleotides to the expected number on the basis of the number of Gs and Cs in the segment The entire genome sequence, masking areas included, was used for the construction of the track Unmasked CpG. The track CpG Islands is constructed on the sequence after all masked sequence is removed. The CpG count is the number of CG dinucleotides in the island. The Percentage CpG is the ratio of CpG nucleotide bases (twice the CpG count) to the length. The ratio of observed to expected CpG is calculated according to the formula (cited in Gardiner-Garden et al. (1987)): Obs/Exp CpG = Number of CpG * N / (Number of C * Number of G) where N = length of sequence. The calculation of the track data is performed by the following command sequence: twoBitToFa assembly.2bit stdout | maskOutFa stdin hard stdout \ | cpg_lh /dev/stdin 2> cpg_lh.err \ | awk '{$2 = $2 - 1; width = $3 - $2; printf("%s\t%d\t%s\t%s %s\t%s\t%s\t%0.0f\t%0.1f\t%s\t%s\n", $1, $2, $3, $5, $6, width, $6, width*$7*0.01, 100.0*2*$6/width, $7, $9);}' \ | sort -k1,1 -k2,2n > cpgIsland.bed The unmasked track data is constructed from twoBitToFa -noMask output for the twoBitToFa command. Data access CpG islands and its associated tables can be explored interactively using the REST API, the Table Browser or the Data Integrator. All the tables can also be queried directly from our public MySQL servers, with more information available on our help page as well as on our blog. The source for the cpg_lh program can be obtained from src/utils/cpgIslandExt/. The cpg_lh program binary can be obtained from: http://hgdownload.soe.ucsc.edu/admin/exe/linux.x86_64/cpg_lh (choose "save file") Credits This track was generated using a modification of a program developed by G. Miklem and L. Hillier (unpublished). References Gardiner-Garden M, Frommer M. CpG islands in vertebrate genomes. J Mol Biol. 1987 Jul 20;196(2):261-82. PMID: 3656447 gap Gap Gap Locations Mapping and Sequencing Description This track depicts gaps in the assembly (Mar. 2012, RGSC Rnor_5.0 (GCA_000001895.3)) of the rat genome. Gaps are represented as black boxes in this track. If the relative order and orientation of the contigs on either side of the gap are known, it is a bridged gap and a white line is drawn through the black box representing the gap. This assembly contains the following principal types of gaps: Contig - Gaps between the scaffolds of a draft clone. (In this context, a contig is a set of overlapping sequence reads.) Scaffold - Gaps between scaffolds in an assembled chromosome. Other - Sequences of gaps not marked in the assembly AGP files. mgcFullMrna MGC Genes Mammalian Gene Collection Full ORF mRNAs Genes and Gene Predictions Description This track show alignments of rat mRNAs from the Mammalian Gene Collection (MGC) having full-length open reading frames (ORFs) to the genome. The goal of the Mammalian Gene Collection is to provide researchers with unrestricted access to sequence-validated full-length protein-coding cDNA clones for human, mouse, rat, xenopus, and zerbrafish genes. Display Conventions and Configuration The track follows the display conventions for gene prediction tracks. An optional codon coloring feature is available for quick validation and comparison of gene predictions. To display codon colors, select the genomic codons option from the Color track by codons pull-down menu. For more information about this feature, go to the Coloring Gene Predictions and Annotations by Codon page. Methods GenBank rat MGC mRNAs identified as having full-length ORFs were aligned against the genome using blat. When a single mRNA aligned in multiple places, the alignment having the highest base identity was found. Only alignments having a base identity level within 1% of the best and at least 95% base identity with the genomic sequence were kept. Credits The rat MGC full-length mRNA track was produced at UCSC from mRNA sequence data submitted to GenBank by the Mammalian Gene Collection project. References Mammalian Gene Collection project references. Kent WJ. BLAT--the BLAST-like alignment tool. Genome Res. 2002 Apr;12(4):656-64. PMID: 11932250; PMC: PMC187518 mrna Rat mRNAs Rat mRNAs from GenBank mRNA and EST Description The mRNA track shows alignments between rat mRNAs in GenBank and the genome. Display Conventions and Configuration This track follows the display conventions for PSL alignment tracks. In dense display mode, the items that are more darkly shaded indicate matches of better quality. The description page for this track has a filter that can be used to change the display mode, alter the color, and include/exclude a subset of items within the track. This may be helpful when many items are shown in the track display, especially when only some are relevant to the current task. To use the filter: Type a term in one or more of the text boxes to filter the mRNA display. For example, to apply the filter to all mRNAs expressed in a specific organ, type the name of the organ in the tissue box. To view the list of valid terms for each text box, consult the table in the Table Browser that corresponds to the factor on which you wish to filter. For example, the "tissue" table contains all the types of tissues that can be entered into the tissue text box. Multiple terms may be entered at once, separated by a space. Wildcards may also be used in the filter. If filtering on more than one value, choose the desired combination logic. If "and" is selected, only mRNAs that match all filter criteria will be highlighted. If "or" is selected, mRNAs that match any one of the filter criteria will be highlighted. Choose the color or display characteristic that should be used to highlight or include/exclude the filtered items. If "exclude" is chosen, the browser will not display mRNAs that match the filter criteria. If "include" is selected, the browser will display only those mRNAs that match the filter criteria. This track may also be configured to display codon coloring, a feature that allows the user to quickly compare mRNAs against the genomic sequence. For more information about this option, go to the Codon and Base Coloring for Alignment Tracks page. Several types of alignment gap may also be colored; for more information, go to the Alignment Insertion/Deletion Display Options page. Methods GenBank rat mRNAs were aligned against the genome using the blat program. When a single mRNA aligned in multiple places, the alignment having the highest base identity was found. Only alignments having a base identity level within 0.5% of the best and at least 96% base identity with the genomic sequence were kept. Credits The mRNA track was produced at UCSC from mRNA sequence data submitted to the international public sequence databases by scientists worldwide. References Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res. 2013 Jan;41(Database issue):D36-42. PMID: 23193287; PMC: PMC3531190 Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL. GenBank: update. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D23-6. PMID: 14681350; PMC: PMC308779 Kent WJ. BLAT - the BLAST-like alignment tool. Genome Res. 2002 Apr;12(4):656-64. PMID: 11932250; PMC: PMC187518 rmsk RepeatMasker Repeating Elements by RepeatMasker Variation and Repeats Description This track was created by using Arian Smit's RepeatMasker program, which screens DNA sequences for interspersed repeats and low complexity DNA sequences. The program outputs a detailed annotation of the repeats that are present in the query sequence (represented by this track), as well as a modified version of the query sequence in which all the annotated repeats have been masked (generally available on the Downloads page). RepeatMasker uses the Repbase Update library of repeats from the Genetic Information Research Institute (GIRI). Repbase Update is described in Jurka (2000) in the References section below. Some newer assemblies have been made with Dfam, not Repbase. You can find the details for how we make our database data here in our "makeDb/doc/" directory. When analyzing the data tables of this track, keep in mind that Repbase is not the same as the Repeatmasker sequence database and that the repeat names in the Repeatmasker output are not the same as the sequence names in the Repeatmasker database. Concretely, you can find a name such as "L1PA4" in the Repeatmasker output and this track, but there is not necessarily a single sequence "L1PA4" in the Repeatmasker database. This is because Repeatmasker creates annotations by joining matches to partial pieces of the database together so there is no 1:1 relationship between its sequence database and the annotations. To learn more, you can read the Repeatmasker paper, its source code or reach out to the Repeatmasker authors, your local expert on transposable elements or us. Display Conventions and Configuration In full display mode, this track displays up to ten different classes of repeats: Short interspersed nuclear elements (SINE), which include ALUs Long interspersed nuclear elements (LINE) Long terminal repeat elements (LTR), which include retroposons DNA repeat elements (DNA) Simple repeats (micro-satellites) Low complexity repeats Satellite repeats RNA repeats (including RNA, tRNA, rRNA, snRNA, scRNA, srpRNA) Other repeats, which includes class RC (Rolling Circle) Unknown The level of color shading in the graphical display reflects the amount of base mismatch, base deletion, and base insertion associated with a repeat element. The higher the combined number of these, the lighter the shading. A "?" at the end of the "Family" or "Class" (for example, DNA?) signifies that the curator was unsure of the classification. At some point in the future, either the "?" will be removed or the classification will be changed. Methods Data are generated using the RepeatMasker -s flag. Additional flags may be used for certain organisms. Repeats are soft-masked. Alignments may extend through repeats, but are not permitted to initiate in them. See the FAQ for more information. Credits Thanks to Arian Smit, Robert Hubley and GIRI for providing the tools and repeat libraries used to generate this track. References Smit AFA, Hubley R, Green P. RepeatMasker Open-3.0. http://www.repeatmasker.org. 1996-2010. Repbase Update is described in: Jurka J. Repbase Update: a database and an electronic journal of repetitive elements. Trends Genet. 2000 Sep;16(9):418-420. PMID: 10973072 For a discussion of repeats in mammalian genomes, see: Smit AF. Interspersed repeats and other mementos of transposable elements in mammalian genomes. Curr Opin Genet Dev. 1999 Dec;9(6):657-63. PMID: 10607616 Smit AF. The origin of interspersed repeats in the human genome. Curr Opin Genet Dev. 1996 Dec;6(6):743-8. PMID: 8994846 xenoRefGene Other RefSeq Non-Rat RefSeq Genes Genes and Gene Predictions Description This track shows known protein-coding and non-protein-coding genes for organisms other than rat, taken from the NCBI RNA reference sequences collection (RefSeq). The data underlying this track are updated weekly. Display Conventions and Configuration This track follows the display conventions for gene prediction tracks. The color shading indicates the level of review the RefSeq record has undergone: predicted (light), provisional (medium), reviewed (dark). The item labels and display colors of features within this track can be configured through the controls at the top of the track description page. Label: By default, items are labeled by gene name. Click the appropriate Label option to display the accession name instead of the gene name, show both the gene and accession names, or turn off the label completely. Codon coloring: This track contains an optional codon coloring feature that allows users to quickly validate and compare gene predictions. To display codon colors, select the genomic codons option from the Color track by codons pull-down menu. For more information about this feature, go to the Coloring Gene Predictions and Annotations by Codon page. Hide non-coding genes: By default, both the protein-coding and non-protein-coding genes are displayed. If you wish to see only the coding genes, click this box. Methods The RNAs were aligned against the rat genome using blat; those with an alignment of less than 15% were discarded. When a single RNA aligned in multiple places, the alignment having the highest base identity was identified. Only alignments having a base identity level within 0.5% of the best and at least 25% base identity with the genomic sequence were kept. Credits This track was produced at UCSC from RNA sequence data generated by scientists worldwide and curated by the NCBI RefSeq project. References Kent WJ. BLAT--the BLAST-like alignment tool. Genome Res. 2002 Apr;12(4):656-64. PMID: 11932250; PMC: PMC187518 Pruitt KD, Brown GR, Hiatt SM, Thibaud-Nissen F, Astashyn A, Ermolaeva O, Farrell CM, Hart J, Landrum MJ, McGarvey KM et al. RefSeq: an update on mammalian reference sequences. Nucleic Acids Res. 2014 Jan;42(Database issue):D756-63. PMID: 24259432; PMC: PMC3965018 Pruitt KD, Tatusova T, Maglott DR. NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 2005 Jan 1;33(Database issue):D501-4. PMID: 15608248; PMC: PMC539979 intronEst Spliced ESTs Rat ESTs That Have Been Spliced mRNA and EST Description This track shows alignments between rat expressed sequence tags (ESTs) in GenBank and the genome that show signs of splicing when aligned against the genome. ESTs are single-read sequences, typically about 500 bases in length, that usually represent fragments of transcribed genes. To be considered spliced, an EST must show evidence of at least one canonical intron (i.e., the genomic sequence between EST alignment blocks must be at least 32 bases in length and have GT/AG ends). By requiring splicing, the level of contamination in the EST databases is drastically reduced at the expense of eliminating many genuine 3' ESTs. For a display of all ESTs (including unspliced), see the rat EST track. Display Conventions and Configuration This track follows the display conventions for PSL alignment tracks. In dense display mode, darker shading indicates a larger number of aligned ESTs. The strand information (+/-) indicates the direction of the match between the EST and the matching genomic sequence. It bears no relationship to the direction of transcription of the RNA with which it might be associated. The description page for this track has a filter that can be used to change the display mode, alter the color, and include/exclude a subset of items within the track. This may be helpful when many items are shown in the track display, especially when only some are relevant to the current task. To use the filter: Type a term in one or more of the text boxes to filter the EST display. For example, to apply the filter to all ESTs expressed in a specific organ, type the name of the organ in the tissue box. To view the list of valid terms for each text box, consult the table in the Table Browser that corresponds to the factor on which you wish to filter. For example, the "tissue" table contains all the types of tissues that can be entered into the tissue text box. Multiple terms may be entered at once, separated by a space. Wildcards may also be used in the filter. If filtering on more than one value, choose the desired combination logic. If "and" is selected, only ESTs that match all filter criteria will be highlighted. If "or" is selected, ESTs that match any one of the filter criteria will be highlighted. Choose the color or display characteristic that should be used to highlight or include/exclude the filtered items. If "exclude" is chosen, the browser will not display ESTs that match the filter criteria. If "include" is selected, the browser will display only those ESTs that match the filter criteria. This track may also be configured to display base labeling, a feature that allows the user to display all bases in the aligning sequence or only those that differ from the genomic sequence. For more information about this option, go to the Base Coloring for Alignment Tracks page. Several types of alignment gap may also be colored; for more information, go to the Alignment Insertion/Deletion Display Options page. Methods To make an EST, RNA is isolated from cells and reverse transcribed into cDNA. Typically, the cDNA is cloned into a plasmid vector and a read is taken from the 5' and/or 3' primer. For most — but not all — ESTs, the reverse transcription is primed by an oligo-dT, which hybridizes with the poly-A tail of mature mRNA. The reverse transcriptase may or may not make it to the 5' end of the mRNA, which may or may not be degraded. In general, the 3' ESTs mark the end of transcription reasonably well, but the 5' ESTs may end at any point within the transcript. Some of the newer cap-selected libraries cover transcription start reasonably well. Before the cap-selection techniques emerged, some projects used random rather than poly-A priming in an attempt to retrieve sequence distant from the 3' end. These projects were successful at this, but as a side effect also deposited sequences from unprocessed mRNA and perhaps even genomic sequences into the EST databases. Even outside of the random-primed projects, there is a degree of non-mRNA contamination. Because of this, a single unspliced EST should be viewed with considerable skepticism. To generate this track, rat ESTs from GenBank were aligned against the genome using blat. Note that the maximum intron length allowed by blat is 750,000 bases, which may eliminate some ESTs with very long introns that might otherwise align. When a single EST aligned in multiple places, the alignment having the highest base identity was identified. Only alignments having a base identity level within 0.5% of the best and at least 96% base identity with the genomic sequence are displayed in this track. Credits This track was produced at UCSC from EST sequence data submitted to the international public sequence databases by scientists worldwide. References Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res. 2013 Jan;41(Database issue):D36-42. PMID: 23193287; PMC: PMC3531190 Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL. GenBank: update. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D23-6. PMID: 14681350; PMC: PMC308779 Kent WJ. BLAT - the BLAST-like alignment tool. Genome Res. 2002 Apr;12(4):656-64. PMID: 11932250; PMC: PMC187518 cpgIslandExtUnmasked Unmasked CpG CpG Islands on All Sequence (Islands < 300 Bases are Light Green) Expression and Regulation Description CpG islands are associated with genes, particularly housekeeping genes, in vertebrates. CpG islands are typically common near transcription start sites and may be associated with promoter regions. Normally a C (cytosine) base followed immediately by a G (guanine) base (a CpG) is rare in vertebrate DNA because the Cs in such an arrangement tend to be methylated. This methylation helps distinguish the newly synthesized DNA strand from the parent strand, which aids in the final stages of DNA proofreading after duplication. However, over evolutionary time, methylated Cs tend to turn into Ts because of spontaneous deamination. The result is that CpGs are relatively rare unless there is selective pressure to keep them or a region is not methylated for some other reason, perhaps having to do with the regulation of gene expression. CpG islands are regions where CpGs are present at significantly higher levels than is typical for the genome as a whole. The unmasked version of the track displays potential CpG islands that exist in repeat regions and would otherwise not be visible in the repeat masked version. By default, only the masked version of the track is displayed. To view the unmasked version, change the visibility settings in the track controls at the top of this page. Methods CpG islands were predicted by searching the sequence one base at a time, scoring each dinucleotide (+17 for CG and -1 for others) and identifying maximally scoring segments. Each segment was then evaluated for the following criteria: GC content of 50% or greater length greater than 200 bp ratio greater than 0.6 of observed number of CG dinucleotides to the expected number on the basis of the number of Gs and Cs in the segment The entire genome sequence, masking areas included, was used for the construction of the track Unmasked CpG. The track CpG Islands is constructed on the sequence after all masked sequence is removed. The CpG count is the number of CG dinucleotides in the island. The Percentage CpG is the ratio of CpG nucleotide bases (twice the CpG count) to the length. The ratio of observed to expected CpG is calculated according to the formula (cited in Gardiner-Garden et al. (1987)): Obs/Exp CpG = Number of CpG * N / (Number of C * Number of G) where N = length of sequence. The calculation of the track data is performed by the following command sequence: twoBitToFa assembly.2bit stdout | maskOutFa stdin hard stdout \ | cpg_lh /dev/stdin 2> cpg_lh.err \ | awk '{$2 = $2 - 1; width = $3 - $2; printf("%s\t%d\t%s\t%s %s\t%s\t%s\t%0.0f\t%0.1f\t%s\t%s\n", $1, $2, $3, $5, $6, width, $6, width*$7*0.01, 100.0*2*$6/width, $7, $9);}' \ | sort -k1,1 -k2,2n > cpgIsland.bed The unmasked track data is constructed from twoBitToFa -noMask output for the twoBitToFa command. Data access CpG islands and its associated tables can be explored interactively using the REST API, the Table Browser or the Data Integrator. All the tables can also be queried directly from our public MySQL servers, with more information available on our help page as well as on our blog. The source for the cpg_lh program can be obtained from src/utils/cpgIslandExt/. The cpg_lh program binary can be obtained from: http://hgdownload.soe.ucsc.edu/admin/exe/linux.x86_64/cpg_lh (choose "save file") Credits This track was generated using a modification of a program developed by G. Miklem and L. Hillier (unpublished). References Gardiner-Garden M, Frommer M. CpG islands in vertebrate genomes. J Mol Biol. 1987 Jul 20;196(2):261-82. PMID: 3656447 refGene RefSeq Genes RefSeq Genes Genes and Gene Predictions Description The RefSeq Genes track shows known rat protein-coding and non-protein-coding genes taken from the NCBI RNA reference sequences collection (RefSeq). The data underlying this track are updated weekly. Please visit the Feedback for Gene and Reference Sequences (RefSeq) page to make suggestions, submit additions and corrections, or ask for help concerning RefSeq records. For more information on the different gene tracks, see our Genes FAQ. Display Conventions and Configuration This track follows the display conventions for gene prediction tracks. The color shading indicates the level of review the RefSeq record has undergone: predicted (light), provisional (medium), reviewed (dark). The item labels and display colors of features within this track can be configured through the controls at the top of the track description page. Label: By default, items are labeled by gene name. Click the appropriate Label option to display the accession name instead of the gene name, show both the gene and accession names, or turn off the label completely. Codon coloring: This track contains an optional codon coloring feature that allows users to quickly validate and compare gene predictions. To display codon colors, select the genomic codons option from the Color track by codons pull-down menu. For more information about this feature, go to the Coloring Gene Predictions and Annotations by Codon page. Hide non-coding genes: By default, both the protein-coding and non-protein-coding genes are displayed. If you wish to see only the coding genes, click this box. Methods RefSeq RNAs were aligned against the rat genome using BLAT. Those with an alignment of less than 15% were discarded. When a single RNA aligned in multiple places, the alignment having the highest base identity was identified. Only alignments having a base identity level within 0.1% of the best and at least 96% base identity with the genomic sequence were kept. Credits This track was produced at UCSC from RNA sequence data generated by scientists worldwide and curated by the NCBI RefSeq project. References Kent WJ. BLAT - the BLAST-like alignment tool. Genome Res. 2002 Apr;12(4):656-64. PMID: 11932250; PMC: PMC187518 Pruitt KD, Brown GR, Hiatt SM, Thibaud-Nissen F, Astashyn A, Ermolaeva O, Farrell CM, Hart J, Landrum MJ, McGarvey KM et al. RefSeq: an update on mammalian reference sequences. Nucleic Acids Res. 2014 Jan;42(Database issue):D756-63. PMID: 24259432; PMC: PMC3965018 Pruitt KD, Tatusova T, Maglott DR. NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 2005 Jan 1;33(Database issue):D501-4. PMID: 15608248; PMC: PMC539979 gold Assembly Assembly from Fragments Mapping and Sequencing Description This track shows the draft assembly (Mar. 2012, RGSC Rnor_5.0 (GCA_000001895.3)) of the rat genome. Whole-genome shotgun reads were assembled into contigs and when possible, contigs were grouped into scaffolds (also known as "supercontigs"). The order, orientation and gap sizes between contigs within a scaffold are based on paired-end read evidence. In dense mode, this track depicts the contigs that make up the currently viewed scaffold. Contig boundaries are distinguished by the use of alternating gold and brown coloration. Where gaps exist between contigs, spaces are shown between the gold and brown blocks. The relative order and orientation of the contigs within a scaffold are always known; therefore, a line is drawn in the graphical display to bridge the blocks. All components within this track, with the exception of the mitochondrial sequence (chrM, NC_001665), are of fragment type "W": Whole Genome Shotgun contig. The mitochondrial sequence is type "F": finished. augustusGene AUGUSTUS AUGUSTUS ab initio gene predictions v3.1 Genes and Gene Predictions Description This track shows ab initio predictions from the program AUGUSTUS (version 3.1). The predictions are based on the genome sequence alone. For more information on the different gene tracks, see our Genes FAQ. Methods Statistical signal models were built for splice sites, branch-point patterns, translation start sites, and the poly-A signal. Furthermore, models were built for the sequence content of protein-coding and non-coding regions as well as for the length distributions of different exon and intron types. Detailed descriptions of most of these different models can be found in Mario Stanke's dissertation. This track shows the most likely gene structure according to a Semi-Markov Conditional Random Field model. Alternative splicing transcripts were obtained with a sampling algorithm (--alternatives-from-sampling=true --sample=100 --minexonintronprob=0.2 --minmeanexonintronprob=0.5 --maxtracks=3 --temperature=2). The different models used by Augustus were trained on a number of different species-specific gene sets, which included 1000-2000 training gene structures. The --species option allows one to choose the species used for training the models. Different training species were used for the --species option when generating these predictions for different groups of assemblies. Assembly Group Training Species Fish zebrafish Birds chicken Human and all other vertebrates human Nematodes caenorhabditis Drosophila fly A. mellifera honeybee1 A. gambiae culex S. cerevisiae saccharomyces This table describes which training species was used for a particular group of assemblies. When available, the closest related training species was used. Credits Thanks to the Stanke lab for providing the AUGUSTUS program. The training for the chicken version was done by Stefanie König and the training for the human and zebrafish versions was done by Mario Stanke. References Stanke M, Diekhans M, Baertsch R, Haussler D. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics. 2008 Mar 1;24(5):637-44. PMID: 18218656 Stanke M, Waack S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics. 2003 Oct;19 Suppl 2:ii215-25. PMID: 14534192 cytoBand Chromosome Band Chromosome Bands Based On ISCN Lengths Mapping and Sequencing Description The chromosome band track represents the approximate location of bands seen on Giemsa-stained chromosomes under conditions where 400 bands are visible across the entire genome. Methods Data are derived from the ideogram file downloaded from the NCBI ftp site ftp://ftp.ncbi.nih.gov/genomes/R_norvegicus/maps/mapview/. Band lengths are estimated based on relative sizes as defined by the International System for Cytogenetic Nomenclature (ISCN). Credits We would like to thank NCBI for providing this information. crisprRanges CRISPR Regions Genome regions processed to find CRISPR/Cas9 target sites (exons +/- 200 bp) Genes and Gene Predictions Description This track shows regions of the genome within 200 bp of transcribed regions and DNA sequences targetable by CRISPR RNA guides using the Cas9 enzyme from S. pyogenes (PAM: NGG). CRISPR target sites were annotated with predicted specificity (off-target effects) and predicted efficiency (on-target cleavage) by various algorithms through the tool CRISPOR. Display Conventions and Configuration The track "CRISPR Regions" shows the regions of the genome where target sites were analyzed, i.e. within 200 bp of transcribed regions as annotated by Ensembl transcript models. The track "CRISPR Targets" shows the target sites in these regions. The target sequence of the guide is shown with a thick (exon) bar. The PAM motif match (NGG) is shown with a thinner bar. Guides are colored to reflect both predicted specificity and efficiency. Specificity reflects the "uniqueness" of a 20mer sequence in the genome; the less unique a sequence is, the more likely it is to cleave other locations of the genome (off-target effects). Efficiency is the frequency of cleavage at the target site (on-target efficiency). Shades of gray stand for sites that are hard to target specifically, as the 20mer is not very unique in the genome: impossible to target: target site has at least one identical copy in the genome and was not scored hard to target: many similar sequences in the genome that alignment stopped, repeat? hard to target: target site was aligned but results in a low specificity score <= 50 (see below) Colors highlight targets that are specific in the genome (MIT specificity > 50) but have different predicted efficiencies: unable to calculate Doench/Fusi 2016 efficiency score low predicted cleavage: Doench/Fusi 2016 Efficiency percentile <= 30 medium predicted cleavage: Doench/Fusi 2016 Efficiency percentile > 30 and < 55 high predicted cleavage: Doench/Fusi 2016 Efficiency > 55 Mouse-over a target site to show predicted specificity and efficiency scores: The MIT Specificity score summarizes all off-targets into a single number from 0-100. The higher the number, the fewer off-target effects are expected. We recommend guides with an MIT specificity > 50. The efficiency score tries to predict if a guide leads to rather strong or weak cleavage. According to (Haeussler et al. 2016), the Doench 2016 Efficiency score should be used to select the guide with the highest cleavage efficiency when expressing guides from RNA PolIII Promoters such as U6. Scores are given as percentiles, e.g. "70%" means that 70% of mammalian guides have a score equal or lower than this guide. The raw score number is also shown in parentheses after the percentile. The Moreno-Mateos 2015 Efficiency score should be used instead of the Doench 2016 score when transcribing the guide in vitro with a T7 promoter, e.g. for injections in mouse, zebrafish or Xenopus embryos. The Moreno-Mateos score is given in percentiles and the raw value in parentheses, see the note above. Click onto features to show all scores and predicted off-targets with up to four mismatches. The Out-of-Frame score by Bae et al. 2014 is correlated with the probability that mutations induced by the guide RNA will disrupt the open reading frame. The authors recommend out-of-frame scores > 66 to create knock-outs with a single guide efficiently. Off-target sites are sorted by the CFD (Cutting Frequency Determination) score (Doench et al. 2016). The higher the CFD score, the more likely there is off-target cleavage at that site. Off-targets with a CFD score < 0.023 are not shown on this page, but are availble when following the link to the external CRISPOR tool. When compared against experimentally validated off-targets by Haeussler et al. 2016, the large majority of predicted off-targets with CFD scores < 0.023 were false-positives. Methods Relationship between predictions and experimental data Like most algorithms, the MIT specificity score is not always a perfect predictor of off-target effects. Despite low scores, many tested guides caused few and/or weak off-target cleavage when tested with whole-genome assays (Figure 2 from Haeussler et al. 2016), as shown below, and the published data contains few data points with high specificity scores. Overall though, the assays showed that the higher the specificity score, the lower the off-target effects. Similarly, efficiency scoring is not very accurate: guides with low scores can be efficient and vice versa. As a general rule, however, the higher the score, the less likely that a guide is very inefficient. The following histograms illustrate, for each type of score, how the share of inefficient guides drops with increasing efficiency scores: When reading this plot, keep in mind that both scores were evaluated on their own training data. Especially for the Moreno-Mateos score, the results are too optimistic, due to overfitting. When evaluated on independent datasets, the correlation of the prediction with other assays was around 25% lower, see Haeussler et al. 2016. At the time of writing, there is no independent dataset available yet to determine the Moreno-Mateos accuracy for each score percentile range. Track methods Exons as predicted by Ensembl Gene models were used, extended by 200 basepairs on each side, searched for the -NGG motif. Flanking 20mer guide sequences were aligned to the genome with BWA and scored with MIT Specificity scores using the command-line version of crispor.org. Non-unique guide sequences were skipped. Flanking sequences were extracted from the genome and input for Crispor efficiency scoring, available from the Crispor downloads page, which includes the Doench 2016, Moreno-Mateos 2015 and Bae 2014 algorithms, among others. Data Access The raw data can be explored interactively with the Table Browser. For automated analysis, the genome annotation is stored in a bigBed file that can be downloaded from our download server. The files for this track are called crispr.bb and crisprDetails.tab and are located in the /gbdb/rn5/crispr directory of our downloads server. Individual regions or the whole genome annotation can be obtained using our tool bigBedToBed, which can be compiled from the source code or downloaded as a precompiled binary for your system. Instructions for downloading source code and binaries can be found here. The tool can also be used to obtain only features within a given range, e.g. bigBedToBed http://hgdownload.soe.ucsc.edu/gbdb/hg19/crisprRanges/crispr.bb -chrom=chr21 -start=0 -end=10000000 stdout The file crisprDetails.tab includes the details of the off-targets. The last column of the bigBed file is the offset of the respective line in crisprDetails.tab. E.g. if the last column is 14227033723, then the following command will extract the line with the corresponding off-target details: curl -s -r 14227033723-14227043723 http://hgdownload.soe.ucsc.edu/gbdb/hg19/crispr/crisprDetails.tab | head -n1. The off-target details can currently not be joined with the table browser. The file crisprDetails.tab is a tab-separated text file with two fields. The first field contains the numbers of off-targets for each mismatch, e.g. "0,0,1,3,49" means 0 off-targets at zero mismatches, 1 at two mismatches, 3 at three and 49 off-targets at four mismatches. The second field is a pipe-separated list of semicolon-separated tuples with the genome coordinates and the CFD score. E.g. "chr10;123376795+;42|chr5;148353274-;39" describes two off-targets, with the first at chr1:123376795 on the positive strand and a CFD score 0.42 Credits Track created by Maximilian Haeussler and Hiram Clawson, with helpful input from Jean-Paul Concordet (MNHN Paris) and Alberto Stolfi (NYU). References Haeussler M, Schönig K, Eckert H, Eschstruth A, Mianné J, Renaud JB, Schneider-Maunoury S, Shkumatava A, Teboul L, Kent J et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. 2016 Jul 5;17(1):148. PMID: 27380939; PMC: PMC4934014 Bae S, Kweon J, Kim HS, Kim JS. Microhomology-based choice of Cas9 nuclease target sites. Nat Methods. 2014 Jul;11(7):705-6. PMID: 24972169 Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, Smith I, Tothova Z, Wilen C, Orchard R et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol. 2016 Feb;34(2):184-91. PMID: 26780180; PMC: PMC4744125 Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. 2013 Sep;31(9):827-32. PMID: 23873081; PMC: PMC3969858 Moreno-Mateos MA, Vejnar CE, Beaudoin JD, Fernandez JP, Mis EK, Khokha MK, Giraldez AJ. CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat Methods. 2015 Oct;12(10):982-8. PMID: 26322839; PMC: PMC4589495 crispr CRISPR CRISPR/Cas9 Sp. Pyog. target sites Genes and Gene Predictions Description This track shows regions of the genome within 200 bp of transcribed regions and DNA sequences targetable by CRISPR RNA guides using the Cas9 enzyme from S. pyogenes (PAM: NGG). CRISPR target sites were annotated with predicted specificity (off-target effects) and predicted efficiency (on-target cleavage) by various algorithms through the tool CRISPOR. Display Conventions and Configuration The track "CRISPR Regions" shows the regions of the genome where target sites were analyzed, i.e. within 200 bp of transcribed regions as annotated by Ensembl transcript models. The track "CRISPR Targets" shows the target sites in these regions. The target sequence of the guide is shown with a thick (exon) bar. The PAM motif match (NGG) is shown with a thinner bar. Guides are colored to reflect both predicted specificity and efficiency. Specificity reflects the "uniqueness" of a 20mer sequence in the genome; the less unique a sequence is, the more likely it is to cleave other locations of the genome (off-target effects). Efficiency is the frequency of cleavage at the target site (on-target efficiency). Shades of gray stand for sites that are hard to target specifically, as the 20mer is not very unique in the genome: impossible to target: target site has at least one identical copy in the genome and was not scored hard to target: many similar sequences in the genome that alignment stopped, repeat? hard to target: target site was aligned but results in a low specificity score <= 50 (see below) Colors highlight targets that are specific in the genome (MIT specificity > 50) but have different predicted efficiencies: unable to calculate Doench/Fusi 2016 efficiency score low predicted cleavage: Doench/Fusi 2016 Efficiency percentile <= 30 medium predicted cleavage: Doench/Fusi 2016 Efficiency percentile > 30 and < 55 high predicted cleavage: Doench/Fusi 2016 Efficiency > 55 Mouse-over a target site to show predicted specificity and efficiency scores: The MIT Specificity score summarizes all off-targets into a single number from 0-100. The higher the number, the fewer off-target effects are expected. We recommend guides with an MIT specificity > 50. The efficiency score tries to predict if a guide leads to rather strong or weak cleavage. According to (Haeussler et al. 2016), the Doench 2016 Efficiency score should be used to select the guide with the highest cleavage efficiency when expressing guides from RNA PolIII Promoters such as U6. Scores are given as percentiles, e.g. "70%" means that 70% of mammalian guides have a score equal or lower than this guide. The raw score number is also shown in parentheses after the percentile. The Moreno-Mateos 2015 Efficiency score should be used instead of the Doench 2016 score when transcribing the guide in vitro with a T7 promoter, e.g. for injections in mouse, zebrafish or Xenopus embryos. The Moreno-Mateos score is given in percentiles and the raw value in parentheses, see the note above. Click onto features to show all scores and predicted off-targets with up to four mismatches. The Out-of-Frame score by Bae et al. 2014 is correlated with the probability that mutations induced by the guide RNA will disrupt the open reading frame. The authors recommend out-of-frame scores > 66 to create knock-outs with a single guide efficiently. Off-target sites are sorted by the CFD (Cutting Frequency Determination) score (Doench et al. 2016). The higher the CFD score, the more likely there is off-target cleavage at that site. Off-targets with a CFD score < 0.023 are not shown on this page, but are availble when following the link to the external CRISPOR tool. When compared against experimentally validated off-targets by Haeussler et al. 2016, the large majority of predicted off-targets with CFD scores < 0.023 were false-positives. Methods Relationship between predictions and experimental data Like most algorithms, the MIT specificity score is not always a perfect predictor of off-target effects. Despite low scores, many tested guides caused few and/or weak off-target cleavage when tested with whole-genome assays (Figure 2 from Haeussler et al. 2016), as shown below, and the published data contains few data points with high specificity scores. Overall though, the assays showed that the higher the specificity score, the lower the off-target effects. Similarly, efficiency scoring is not very accurate: guides with low scores can be efficient and vice versa. As a general rule, however, the higher the score, the less likely that a guide is very inefficient. The following histograms illustrate, for each type of score, how the share of inefficient guides drops with increasing efficiency scores: When reading this plot, keep in mind that both scores were evaluated on their own training data. Especially for the Moreno-Mateos score, the results are too optimistic, due to overfitting. When evaluated on independent datasets, the correlation of the prediction with other assays was around 25% lower, see Haeussler et al. 2016. At the time of writing, there is no independent dataset available yet to determine the Moreno-Mateos accuracy for each score percentile range. Track methods Exons as predicted by Ensembl Gene models were used, extended by 200 basepairs on each side, searched for the -NGG motif. Flanking 20mer guide sequences were aligned to the genome with BWA and scored with MIT Specificity scores using the command-line version of crispor.org. Non-unique guide sequences were skipped. Flanking sequences were extracted from the genome and input for Crispor efficiency scoring, available from the Crispor downloads page, which includes the Doench 2016, Moreno-Mateos 2015 and Bae 2014 algorithms, among others. Data Access The raw data can be explored interactively with the Table Browser. For automated analysis, the genome annotation is stored in a bigBed file that can be downloaded from our download server. The files for this track are called crispr.bb and crisprDetails.tab and are located in the /gbdb/rn5/crispr directory of our downloads server. Individual regions or the whole genome annotation can be obtained using our tool bigBedToBed, which can be compiled from the source code or downloaded as a precompiled binary for your system. Instructions for downloading source code and binaries can be found here. The tool can also be used to obtain only features within a given range, e.g. bigBedToBed http://hgdownload.soe.ucsc.edu/gbdb/hg19/crispr/crispr.bb -chrom=chr21 -start=0 -end=10000000 stdout The file crisprDetails.tab includes the details of the off-targets. The last column of the bigBed file is the offset of the respective line in crisprDetails.tab. E.g. if the last column is 14227033723, then the following command will extract the line with the corresponding off-target details: curl -s -r 14227033723-14227043723 http://hgdownload.soe.ucsc.edu/gbdb/hg19/crispr/crisprDetails.tab | head -n1. The off-target details can currently not be joined with the table browser. The file crisprDetails.tab is a tab-separated text file with two fields. The first field contains the numbers of off-targets for each mismatch, e.g. "0,0,1,3,49" means 0 off-targets at zero mismatches, 1 at two mismatches, 3 at three and 49 off-targets at four mismatches. The second field is a pipe-separated list of semicolon-separated tuples with the genome coordinates and the CFD score. E.g. "chr10;123376795+;42|chr5;148353274-;39" describes two off-targets, with the first at chr1:123376795 on the positive strand and a CFD score 0.42 Credits Track created by Maximilian Haeussler and Hiram Clawson, with helpful input from Jean-Paul Concordet (MNHN Paris) and Alberto Stolfi (NYU). References Haeussler M, Schönig K, Eckert H, Eschstruth A, Mianné J, Renaud JB, Schneider-Maunoury S, Shkumatava A, Teboul L, Kent J et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. 2016 Jul 5;17(1):148. PMID: 27380939; PMC: PMC4934014 Bae S, Kweon J, Kim HS, Kim JS. Microhomology-based choice of Cas9 nuclease target sites. Nat Methods. 2014 Jul;11(7):705-6. PMID: 24972169 Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, Smith I, Tothova Z, Wilen C, Orchard R et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol. 2016 Feb;34(2):184-91. PMID: 26780180; PMC: PMC4744125 Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. 2013 Sep;31(9):827-32. PMID: 23873081; PMC: PMC3969858 Moreno-Mateos MA, Vejnar CE, Beaudoin JD, Fernandez JP, Mis EK, Khokha MK, Giraldez AJ. CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat Methods. 2015 Oct;12(10):982-8. PMID: 26322839; PMC: PMC4589495 crisprTargets CRISPR Targets CRISPR/Cas9 -NGG Targets Genes and Gene Predictions Description This track shows regions of the genome within 200 bp of transcribed regions and DNA sequences targetable by CRISPR RNA guides using the Cas9 enzyme from S. pyogenes (PAM: NGG). CRISPR target sites were annotated with predicted specificity (off-target effects) and predicted efficiency (on-target cleavage) by various algorithms through the tool CRISPOR. Display Conventions and Configuration The track "CRISPR Regions" shows the regions of the genome where target sites were analyzed, i.e. within 200 bp of transcribed regions as annotated by Ensembl transcript models. The track "CRISPR Targets" shows the target sites in these regions. The target sequence of the guide is shown with a thick (exon) bar. The PAM motif match (NGG) is shown with a thinner bar. Guides are colored to reflect both predicted specificity and efficiency. Specificity reflects the "uniqueness" of a 20mer sequence in the genome; the less unique a sequence is, the more likely it is to cleave other locations of the genome (off-target effects). Efficiency is the frequency of cleavage at the target site (on-target efficiency). Shades of gray stand for sites that are hard to target specifically, as the 20mer is not very unique in the genome: impossible to target: target site has at least one identical copy in the genome and was not scored hard to target: many similar sequences in the genome that alignment stopped, repeat? hard to target: target site was aligned but results in a low specificity score <= 50 (see below) Colors highlight targets that are specific in the genome (MIT specificity > 50) but have different predicted efficiencies: unable to calculate Doench/Fusi 2016 efficiency score low predicted cleavage: Doench/Fusi 2016 Efficiency percentile <= 30 medium predicted cleavage: Doench/Fusi 2016 Efficiency percentile > 30 and < 55 high predicted cleavage: Doench/Fusi 2016 Efficiency > 55 Mouse-over a target site to show predicted specificity and efficiency scores: The MIT Specificity score summarizes all off-targets into a single number from 0-100. The higher the number, the fewer off-target effects are expected. We recommend guides with an MIT specificity > 50. The efficiency score tries to predict if a guide leads to rather strong or weak cleavage. According to (Haeussler et al. 2016), the Doench 2016 Efficiency score should be used to select the guide with the highest cleavage efficiency when expressing guides from RNA PolIII Promoters such as U6. Scores are given as percentiles, e.g. "70%" means that 70% of mammalian guides have a score equal or lower than this guide. The raw score number is also shown in parentheses after the percentile. The Moreno-Mateos 2015 Efficiency score should be used instead of the Doench 2016 score when transcribing the guide in vitro with a T7 promoter, e.g. for injections in mouse, zebrafish or Xenopus embryos. The Moreno-Mateos score is given in percentiles and the raw value in parentheses, see the note above. Click onto features to show all scores and predicted off-targets with up to four mismatches. The Out-of-Frame score by Bae et al. 2014 is correlated with the probability that mutations induced by the guide RNA will disrupt the open reading frame. The authors recommend out-of-frame scores > 66 to create knock-outs with a single guide efficiently. Off-target sites are sorted by the CFD (Cutting Frequency Determination) score (Doench et al. 2016). The higher the CFD score, the more likely there is off-target cleavage at that site. Off-targets with a CFD score < 0.023 are not shown on this page, but are availble when following the link to the external CRISPOR tool. When compared against experimentally validated off-targets by Haeussler et al. 2016, the large majority of predicted off-targets with CFD scores < 0.023 were false-positives. Methods Relationship between predictions and experimental data Like most algorithms, the MIT specificity score is not always a perfect predictor of off-target effects. Despite low scores, many tested guides caused few and/or weak off-target cleavage when tested with whole-genome assays (Figure 2 from Haeussler et al. 2016), as shown below, and the published data contains few data points with high specificity scores. Overall though, the assays showed that the higher the specificity score, the lower the off-target effects. Similarly, efficiency scoring is not very accurate: guides with low scores can be efficient and vice versa. As a general rule, however, the higher the score, the less likely that a guide is very inefficient. The following histograms illustrate, for each type of score, how the share of inefficient guides drops with increasing efficiency scores: When reading this plot, keep in mind that both scores were evaluated on their own training data. Especially for the Moreno-Mateos score, the results are too optimistic, due to overfitting. When evaluated on independent datasets, the correlation of the prediction with other assays was around 25% lower, see Haeussler et al. 2016. At the time of writing, there is no independent dataset available yet to determine the Moreno-Mateos accuracy for each score percentile range. Track methods Exons as predicted by Ensembl Gene models were used, extended by 200 basepairs on each side, searched for the -NGG motif. Flanking 20mer guide sequences were aligned to the genome with BWA and scored with MIT Specificity scores using the command-line version of crispor.org. Non-unique guide sequences were skipped. Flanking sequences were extracted from the genome and input for Crispor efficiency scoring, available from the Crispor downloads page, which includes the Doench 2016, Moreno-Mateos 2015 and Bae 2014 algorithms, among others. Data Access The raw data can be explored interactively with the Table Browser. For automated analysis, the genome annotation is stored in a bigBed file that can be downloaded from our download server. The files for this track are called crispr.bb and crisprDetails.tab and are located in the /gbdb/rn5/crispr directory of our downloads server. Individual regions or the whole genome annotation can be obtained using our tool bigBedToBed, which can be compiled from the source code or downloaded as a precompiled binary for your system. Instructions for downloading source code and binaries can be found here. The tool can also be used to obtain only features within a given range, e.g. bigBedToBed http://hgdownload.soe.ucsc.edu/gbdb/hg19/crisprTargets/crispr.bb -chrom=chr21 -start=0 -end=10000000 stdout The file crisprDetails.tab includes the details of the off-targets. The last column of the bigBed file is the offset of the respective line in crisprDetails.tab. E.g. if the last column is 14227033723, then the following command will extract the line with the corresponding off-target details: curl -s -r 14227033723-14227043723 http://hgdownload.soe.ucsc.edu/gbdb/hg19/crispr/crisprDetails.tab | head -n1. The off-target details can currently not be joined with the table browser. The file crisprDetails.tab is a tab-separated text file with two fields. The first field contains the numbers of off-targets for each mismatch, e.g. "0,0,1,3,49" means 0 off-targets at zero mismatches, 1 at two mismatches, 3 at three and 49 off-targets at four mismatches. The second field is a pipe-separated list of semicolon-separated tuples with the genome coordinates and the CFD score. E.g. "chr10;123376795+;42|chr5;148353274-;39" describes two off-targets, with the first at chr1:123376795 on the positive strand and a CFD score 0.42 Credits Track created by Maximilian Haeussler and Hiram Clawson, with helpful input from Jean-Paul Concordet (MNHN Paris) and Alberto Stolfi (NYU). References Haeussler M, Schönig K, Eckert H, Eschstruth A, Mianné J, Renaud JB, Schneider-Maunoury S, Shkumatava A, Teboul L, Kent J et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. 2016 Jul 5;17(1):148. PMID: 27380939; PMC: PMC4934014 Bae S, Kweon J, Kim HS, Kim JS. Microhomology-based choice of Cas9 nuclease target sites. Nat Methods. 2014 Jul;11(7):705-6. PMID: 24972169 Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, Smith I, Tothova Z, Wilen C, Orchard R et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol. 2016 Feb;34(2):184-91. PMID: 26780180; PMC: PMC4744125 Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. 2013 Sep;31(9):827-32. PMID: 23873081; PMC: PMC3969858 Moreno-Mateos MA, Vejnar CE, Beaudoin JD, Fernandez JP, Mis EK, Khokha MK, Giraldez AJ. CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat Methods. 2015 Oct;12(10):982-8. PMID: 26322839; PMC: PMC4589495 ensGene Ensembl Genes Ensembl Genes Genes and Gene Predictions Description These gene predictions were generated by Ensembl. For more information on the different gene tracks, see our Genes FAQ. Methods For a description of the methods used in Ensembl gene predictions, please refer to Hubbard et al. (2002), also listed in the References section below. Data access Ensembl Gene data can be explored interactively using the Table Browser or the Data Integrator. For local downloads, the genePred format files for rn5 are available in our downloads directory as ensGene.txt.gz or in our genes download directory in GTF format. For programmatic access, the data can be queried from the REST API or directly from our public MySQL servers. Instructions on this method are available on our MySQL help page and on our blog. Previous versions of this track can be found on our archive download server. Credits We would like to thank Ensembl for providing these gene annotations. For more information, please see Ensembl's genome annotation page. References Hubbard T, Barker D, Birney E, Cameron G, Chen Y, Clark L, Cox T, Cuff J, Curwen V, Down T et al. The Ensembl genome database project. Nucleic Acids Res. 2002 Jan 1;30(1):38-41. PMID: 11752248; PMC: PMC99161 evaSnpContainer EVA SNP Short Genetic Variants from European Variant Archive Variation and Repeats Description These tracks contain mappings of single nucleotide variants and small insertions and deletions (indels) from the European Variation Archive (EVA) for the rat rn5 genome. The dbSNP database at NCBI no longer hosts non-human variants. Interpreting and Configuring the Graphical Display Variants are shown as single tick marks at most zoom levels. When viewing the track at or near base-level resolution, the displayed width of the SNP variant corresponds to the width of the variant in the reference sequence. Insertions are indicated by a single tick mark displayed between two nucleotides, single nucleotide polymorphisms are displayed as the width of a single base, and multiple nucleotide variants are represented by a block that spans two or more bases. The display is set to automatically collapse to dense visibility when there are more than 100k variants in the window. When the window size is more than 250k bp, the display is switched to density graph mode. Searching, details, and filtering Navigation to an individual variant can be accomplished by typing or copying the variant identifier (rsID) or the genomic coordinates into the Position/Search box on the Browser. A click on an item in the graphical display displays a page with data about that variant. Data fields include the Reference and Alternate Alleles, the class of the variant as reported by EVA, the source of the data, the amino acid change, if any, and the functional class as determined by UCSC's Variant Annotation Integrator. Variants can be filtered using the track controls to show subsets of the data by either EVA Sequence Ontology (SO) term, UCSC-generated functional effect, or by color, which bins the UCSC functional effects into general classes. Mouse-over Mousing over an item shows the ucscClass, which is the consequence according to the Variant Annotation Integrator, and the aaChange when one is available, which is the change in amino acid in HGVS.p terms. Items may have multiple ucscClasses, which will all be shown in the mouse-over in a comma-separated list. Likewise, multiple HGVS.p terms may be shown for each rsID separated by spaces describing all possible AA changes. Multiple items may appear due to different variant predictions on multiple gene transcripts. For all organisms the gene models used were the NCBI RefSeq curated when available, if not then ensembl genes, or finally UCSC mappings of RefSeq if neither of the previous models was possible. Track colors Variants are colored according to the most potentially deleterious functional effect prediction according to the Variant Annotation Integrator. Specific bins can be seen in the Methods section below. Color Variant Type Protein-altering variants and splice site variants Synonymous codon variants Non-coding transcript or Untranslated Region (UTR) variants Intergenic and intronic variants Sequence ontology (SO) Variants are classified by EVA into one of the following sequence ontology terms: substitution — A single nucleotide in the reference is replaced by another, alternate allele deletion — One or more nucleotides is deleted. The representation in the database is to display one additional nucleotide in both the Reference field (Ref) and the Alternate Allele field (Alt). E.g. a variant that is a deletion of an A maybe be represented as Ref = GA and Alt = G. insertion — One or more nucleotides is inserted. The representation in the database is to display one additional nucleotide in both the Reference field (Ref) and the Alternate Allele field (Alt). E.g. a variant that is an insertion of a T maybe be represented as Ref = G and Alt = GT delins — Similar to tandemRepeat, in that the runs of Ref and Alt Alleles are of different length, except that there is more than one type of nucleotide, e.g., Ref = CCAAAAACAAAAACA, Alt = ACAAAAAC. multipleNucleotideVariant — More than one nucleotide is substituted by an equal number of different nucleotides, e.g., Ref = AA, Alt = GC. sequence alteration — A parent term meant to signify a deviation from another sequence. Can be assigned to variants that have not been characterized yet. Methods Data were downloaded from the European Variation Archive EVA current_ids.vcf.gz files corresponding to the proper assembly. Chromosome names were converted to UCSC-style and the variants passed through the Variant Annotation Integrator to predict consequence. For every organism the NCBI RefSeq curated models were used when available, followed by ensembl genes, and finally UCSC mapping of RefSeq when neither of the previous models were possible. Variants were then colored according to their predicted consequence in the following fashion: Protein-altering variants and splice site variants - exon_loss_variant, frameshift_variant, inframe_deletion, inframe_insertion, initiator_codon_variant, missense_variant, splice_acceptor_variant, splice_donor_variant, splice_region_variant, stop_gained, stop_lost, coding_sequence_variant, transcript_ablation Synonymous codon variants - synonymous_variant, stop_retained_variant Non-coding transcript or Untranslated Region (UTR) variants - 5_prime_UTR_variant, 3_prime_UTR_variant, complex_transcript_variant, non_coding_transcript_exon_variant Intergenic and intronic variants - upstream_gene_variant, downstream_gene_variant, intron_variant, intergenic_variant, NMD_transcript_variant, no_sequence_alteration Sequence Ontology ("SO:") terms were converted to the variant classes, then the files were converted to BED, and then bigBed format. No functional annotations were provided by the EVA (e.g., missense, nonsense, etc). These were computed using UCSC's Variant Annotation Integrator (Hinrichs, et al., 2016). Amino-acid substitutions for missense variants are based on RefSeq alignments of mRNA transcripts, which do not always match the amino acids predicted from translating the genomic sequence. Therefore, in some instances, the variant and the genomic nucleotide and associated amino acid may be reversed. E.g., a Pro > Arg change from the perspective of the mRNA would be Arg > Pro from the persepective the genomic sequence. Also, in bosTau9, galGal5, rheMac8, danRer10 and danRer11 the mitochondrial sequence was removed or renamed to match UCSC. For complete documentation of the processing of these tracks, see the makedoc corresponding to the version of interest. For example, the EVA Release 6 MakeDoc. Data Access Note: It is not recommeneded to use LiftOver to convert SNPs between assemblies, and more information about how to convert SNPs between assemblies can be found on the following FAQ entry. The data can be explored interactively with the Table Browser, or the Data Integrator. For automated analysis, the data may be queried from our REST API. Please refer to our mailing list archives for questions, or our Data Access FAQ for more information. For automated download and analysis, this annotation is stored in a bigBed file that can be downloaded from our download server. Use the corresponding version number for the track of interest, e.g. evaSnp6.bb. Individual regions or the whole genome annotation can be obtained using our tool bigBedToBed which can be compiled from the source code or downloaded as a precompiled binary for your system. Instructions for downloading source code and binaries can be found here. The tool can also be used to obtain only features within a given range, e.g. bigBedToBed https://hgdownload.soe.ucsc.edu/gbdb/rn5/bbi/evaSnp6.bb -chrom=chr21 -start=0 -end=100000000 stdout Credits This track was produced from the European Variation Archive release data. Consequences were predicted using UCSC's Variant Annotation Integrator and NCBI's RefSeq as well as ensembl gene models. References Cezard T, Cunningham F, Hunt SE, Koylass B, Kumar N, Saunders G, Shen A, Silva AF, Tsukanov K, Venkataraman S et al. The European Variation Archive: a FAIR resource of genomic variation for all species. Nucleic Acids Res. 2021 Oct 28:gkab960. doi:10.1093/nar/gkab960. Epub ahead of print. PMID: 34718739. PMID: PMC8728205. Hinrichs AS, Raney BJ, Speir ML, Rhead B, Casper J, Karolchik D, Kuhn RM, Rosenbloom KR, Zweig AS, Haussler D, Kent WJ. UCSC Data Integrator and Variant Annotation Integrator. Bioinformatics. 2016 May 1;32(9):1430-2. PMID: 26740527; PMC: PMC4848401 evaSnp6 EVA SNP Release 6 Short Genetic Variants from European Variant Archive Release 6 Variation and Repeats Description These tracks contain mappings of single nucleotide variants and small insertions and deletions (indels) from the European Variation Archive (EVA) for the rat rn5 genome. The dbSNP database at NCBI no longer hosts non-human variants. Interpreting and Configuring the Graphical Display Variants are shown as single tick marks at most zoom levels. When viewing the track at or near base-level resolution, the displayed width of the SNP variant corresponds to the width of the variant in the reference sequence. Insertions are indicated by a single tick mark displayed between two nucleotides, single nucleotide polymorphisms are displayed as the width of a single base, and multiple nucleotide variants are represented by a block that spans two or more bases. The display is set to automatically collapse to dense visibility when there are more than 100k variants in the window. When the window size is more than 250k bp, the display is switched to density graph mode. Searching, details, and filtering Navigation to an individual variant can be accomplished by typing or copying the variant identifier (rsID) or the genomic coordinates into the Position/Search box on the Browser. A click on an item in the graphical display displays a page with data about that variant. Data fields include the Reference and Alternate Alleles, the class of the variant as reported by EVA, the source of the data, the amino acid change, if any, and the functional class as determined by UCSC's Variant Annotation Integrator. Variants can be filtered using the track controls to show subsets of the data by either EVA Sequence Ontology (SO) term, UCSC-generated functional effect, or by color, which bins the UCSC functional effects into general classes. Mouse-over Mousing over an item shows the ucscClass, which is the consequence according to the Variant Annotation Integrator, and the aaChange when one is available, which is the change in amino acid in HGVS.p terms. Items may have multiple ucscClasses, which will all be shown in the mouse-over in a comma-separated list. Likewise, multiple HGVS.p terms may be shown for each rsID separated by spaces describing all possible AA changes. Multiple items may appear due to different variant predictions on multiple gene transcripts. For all organisms the gene models used were the NCBI RefSeq curated when available, if not then ensembl genes, or finally UCSC mappings of RefSeq if neither of the previous models was possible. Track colors Variants are colored according to the most potentially deleterious functional effect prediction according to the Variant Annotation Integrator. Specific bins can be seen in the Methods section below. Color Variant Type Protein-altering variants and splice site variants Synonymous codon variants Non-coding transcript or Untranslated Region (UTR) variants Intergenic and intronic variants Sequence ontology (SO) Variants are classified by EVA into one of the following sequence ontology terms: substitution — A single nucleotide in the reference is replaced by another, alternate allele deletion — One or more nucleotides is deleted. The representation in the database is to display one additional nucleotide in both the Reference field (Ref) and the Alternate Allele field (Alt). E.g. a variant that is a deletion of an A maybe be represented as Ref = GA and Alt = G. insertion — One or more nucleotides is inserted. The representation in the database is to display one additional nucleotide in both the Reference field (Ref) and the Alternate Allele field (Alt). E.g. a variant that is an insertion of a T maybe be represented as Ref = G and Alt = GT delins — Similar to tandemRepeat, in that the runs of Ref and Alt Alleles are of different length, except that there is more than one type of nucleotide, e.g., Ref = CCAAAAACAAAAACA, Alt = ACAAAAAC. multipleNucleotideVariant — More than one nucleotide is substituted by an equal number of different nucleotides, e.g., Ref = AA, Alt = GC. sequence alteration — A parent term meant to signify a deviation from another sequence. Can be assigned to variants that have not been characterized yet. Methods Data were downloaded from the European Variation Archive EVA current_ids.vcf.gz files corresponding to the proper assembly. Chromosome names were converted to UCSC-style and the variants passed through the Variant Annotation Integrator to predict consequence. For every organism the NCBI RefSeq curated models were used when available, followed by ensembl genes, and finally UCSC mapping of RefSeq when neither of the previous models were possible. Variants were then colored according to their predicted consequence in the following fashion: Protein-altering variants and splice site variants - exon_loss_variant, frameshift_variant, inframe_deletion, inframe_insertion, initiator_codon_variant, missense_variant, splice_acceptor_variant, splice_donor_variant, splice_region_variant, stop_gained, stop_lost, coding_sequence_variant, transcript_ablation Synonymous codon variants - synonymous_variant, stop_retained_variant Non-coding transcript or Untranslated Region (UTR) variants - 5_prime_UTR_variant, 3_prime_UTR_variant, complex_transcript_variant, non_coding_transcript_exon_variant Intergenic and intronic variants - upstream_gene_variant, downstream_gene_variant, intron_variant, intergenic_variant, NMD_transcript_variant, no_sequence_alteration Sequence Ontology ("SO:") terms were converted to the variant classes, then the files were converted to BED, and then bigBed format. No functional annotations were provided by the EVA (e.g., missense, nonsense, etc). These were computed using UCSC's Variant Annotation Integrator (Hinrichs, et al., 2016). Amino-acid substitutions for missense variants are based on RefSeq alignments of mRNA transcripts, which do not always match the amino acids predicted from translating the genomic sequence. Therefore, in some instances, the variant and the genomic nucleotide and associated amino acid may be reversed. E.g., a Pro > Arg change from the perspective of the mRNA would be Arg > Pro from the persepective the genomic sequence. Also, in bosTau9, galGal5, rheMac8, danRer10 and danRer11 the mitochondrial sequence was removed or renamed to match UCSC. For complete documentation of the processing of these tracks, see the makedoc corresponding to the version of interest. For example, the EVA Release 6 MakeDoc. Data Access Note: It is not recommeneded to use LiftOver to convert SNPs between assemblies, and more information about how to convert SNPs between assemblies can be found on the following FAQ entry. The data can be explored interactively with the Table Browser, or the Data Integrator. For automated analysis, the data may be queried from our REST API. Please refer to our mailing list archives for questions, or our Data Access FAQ for more information. For automated download and analysis, this annotation is stored in a bigBed file that can be downloaded from our download server. Use the corresponding version number for the track of interest, e.g. evaSnp6.bb. Individual regions or the whole genome annotation can be obtained using our tool bigBedToBed which can be compiled from the source code or downloaded as a precompiled binary for your system. Instructions for downloading source code and binaries can be found here. The tool can also be used to obtain only features within a given range, e.g. bigBedToBed https://hgdownload.soe.ucsc.edu/gbdb/rn5/bbi/evaSnp6.bb -chrom=chr21 -start=0 -end=100000000 stdout Credits This track was produced from the European Variation Archive release data. Consequences were predicted using UCSC's Variant Annotation Integrator and NCBI's RefSeq as well as ensembl gene models. References Cezard T, Cunningham F, Hunt SE, Koylass B, Kumar N, Saunders G, Shen A, Silva AF, Tsukanov K, Venkataraman S et al. The European Variation Archive: a FAIR resource of genomic variation for all species. Nucleic Acids Res. 2021 Oct 28:gkab960. doi:10.1093/nar/gkab960. Epub ahead of print. PMID: 34718739. PMID: PMC8728205. Hinrichs AS, Raney BJ, Speir ML, Rhead B, Casper J, Karolchik D, Kuhn RM, Rosenbloom KR, Zweig AS, Haussler D, Kent WJ. UCSC Data Integrator and Variant Annotation Integrator. Bioinformatics. 2016 May 1;32(9):1430-2. PMID: 26740527; PMC: PMC4848401 evaSnp5 EVA SNP Release 5 Short Genetic Variants from European Variant Archive Release 5 Variation and Repeats Description This track contains mappings of single nucleotide variants and small insertions and deletions (indels) from the European Variation Archive (EVA) Release 5 for the rat rn5 genome. The dbSNP database at NCBI no longer hosts non-human variants. Interpreting and Configuring the Graphical Display Variants are shown as single tick marks at most zoom levels. When viewing the track at or near base-level resolution, the displayed width of the SNP variant corresponds to the width of the variant in the reference sequence. Insertions are indicated by a single tick mark displayed between two nucleotides, single nucleotide polymorphisms are displayed as the width of a single base, and multiple nucleotide variants are represented by a block that spans two or more bases. The display is set to automatically collapse to dense visibility when there are more than 100k variants in the window. When the window size is more than 250k bp, the display is switched to density graph mode. Searching, details, and filtering Navigation to an individual variant can be accomplished by typing or copying the variant identifier (rsID) or the genomic coordinates into the Position/Search box on the Browser. A click on an item in the graphical display displays a page with data about that variant. Data fields include the Reference and Alternate Alleles, the class of the variant as reported by EVA, the source of the data, the amino acid change, if any, and the functional class as determined by UCSC's Variant Annotation Integrator. Variants can be filtered using the track controls to show subsets of the data by either EVA Sequence Ontology (SO) term, UCSC-generated functional effect, or by color, which bins the UCSC functional effects into general classes. Mouse-over Mousing over an item shows the ucscClass, which is the consequence according to the Variant Annotation Integrator, and the aaChange when one is available, which is the change in amino acid in HGVS.p terms. Items may have multiple ucscClasses, which will all be shown in the mouse-over in a comma-separated list. Likewise, multiple HGVS.p terms may be shown for each rsID separated by spaces describing all possible AA changes. Multiple items may appear due to different variant predictions on multiple gene transcripts. For all organisms the gene models used were the NCBI RefSeq curated when available, if not then ensembl genes, or finally UCSC mappings of RefSeq if neither of the previous models was possible. Track colors Variants are colored according to the most potentially deleterious functional effect prediction according to the Variant Annotation Integrator. Specific bins can be seen in the Methods section below. Color Variant Type Protein-altering variants and splice site variants Synonymous codon variants Non-coding transcript or Untranslated Region (UTR) variants Intergenic and intronic variants Sequence ontology (SO) Variants are classified by EVA into one of the following sequence ontology terms: substitution — A single nucleotide in the reference is replaced by another, alternate allele deletion — One or more nucleotides is deleted. The representation in the database is to display one additional nucleotide in both the Reference field (Ref) and the Alternate Allele field (Alt). E.g. a variant that is a deletion of an A maybe be represented as Ref = GA and Alt = G. insertion — One or more nucleotides is inserted. The representation in the database is to display one additional nucleotide in both the Reference field (Ref) and the Alternate Allele field (Alt). E.g. a variant that is an insertion of a T maybe be represented as Ref = G and Alt = GT delins — Similar to tandemRepeat, in that the runs of Ref and Alt Alleles are of different length, except that there is more than one type of nucleotide, e.g., Ref = CCAAAAACAAAAACA, Alt = ACAAAAAC. multipleNucleotideVariant — More than one nucleotide is substituted by an equal number of different nucleotides, e.g., Ref = AA, Alt = GC. sequence alteration — A parent term meant to signify a deviation from another sequence. Can be assigned to variants that have not been characterized yet. Methods Data were downloaded from the European Variation Archive EVA release 5 (2023-9-7) current_ids.vcf.gz files corresponding to the proper assembly. Chromosome names were converted to UCSC-style and the variants passed through the Variant Annotation Integrator to predict consequence. For every organism the NCBI RefSeq curated models were used when available, followed by ensembl genes, and finally UCSC mapping of RefSeq when neither of the previous models were possible. Variants were then colored according to their predicted consequence in the following fashion: Protein-altering variants and splice site variants - exon_loss_variant, frameshift_variant, inframe_deletion, inframe_insertion, initiator_codon_variant, missense_variant, splice_acceptor_variant, splice_donor_variant, splice_region_variant, stop_gained, stop_lost, coding_sequence_variant, transcript_ablation Synonymous codon variants - synonymous_variant, stop_retained_variant Non-coding transcript or Untranslated Region (UTR) variants - 5_prime_UTR_variant, 3_prime_UTR_variant, complex_transcript_variant, non_coding_transcript_exon_variant Intergenic and intronic variants - upstream_gene_variant, downstream_gene_variant, intron_variant, intergenic_variant, NMD_transcript_variant, no_sequence_alteration Sequence Ontology ("SO:") terms were converted to the variant classes, then the files were converted to BED, and then bigBed format. No functional annotations were provided by the EVA (e.g., missense, nonsense, etc). These were computed using UCSC's Variant Annotation Integrator (Hinrichs, et al., 2016). Amino-acid substitutions for missense variants are based on RefSeq alignments of mRNA transcripts, which do not always match the amino acids predicted from translating the genomic sequence. Therefore, in some instances, the variant and the genomic nucleotide and associated amino acid may be reversed. E.g., a Pro > Arg change from the perspective of the mRNA would be Arg > Pro from the persepective the genomic sequence. Also, in bosTau9, galGal5, rheMac8, danRer10 and danRer11 the mitochondrial sequence was removed or renamed to match UCSC. For complete documentation of the processing of these tracks, read the EVA Release 5 MakeDoc. Data Access Note: It is not recommeneded to use LiftOver to convert SNPs between assemblies, and more information about how to convert SNPs between assemblies can be found on the following FAQ entry. The data can be explored interactively with the Table Browser, or the Data Integrator. For automated analysis, the data may be queried from our REST API. Please refer to our mailing list archives for questions, or our Data Access FAQ for more information. For automated download and analysis, this annotation is stored in a bigBed file that can be downloaded from our download server. The file for this track is called evaSnp5.bb. Individual regions or the whole genome annotation can be obtained using our tool bigBedToBed which can be compiled from the source code or downloaded as a precompiled binary for your system. Instructions for downloading source code and binaries can be found here. The tool can also be used to obtain only features within a given range, e.g. bigBedToBed https://hgdownload.soe.ucsc.edu/gbdb/rn5/bbi/evaSnp5.bb -chrom=chr21 -start=0 -end=100000000 stdout Credits This track was produced from the European Variation Archive release 5 data. Consequences were predicted using UCSC's Variant Annotation Integrator and NCBI's RefSeq as well as ensembl gene models. References Cezard T, Cunningham F, Hunt SE, Koylass B, Kumar N, Saunders G, Shen A, Silva AF, Tsukanov K, Venkataraman S et al. The European Variation Archive: a FAIR resource of genomic variation for all species. Nucleic Acids Res. 2021 Oct 28:gkab960. doi:10.1093/nar/gkab960. Epub ahead of print. PMID: 34718739. PMID: PMC8728205. Hinrichs AS, Raney BJ, Speir ML, Rhead B, Casper J, Karolchik D, Kuhn RM, Rosenbloom KR, Zweig AS, Haussler D, Kent WJ. UCSC Data Integrator and Variant Annotation Integrator. Bioinformatics. 2016 May 1;32(9):1430-2. PMID: 26740527; PMC: PMC4848401 evaSnp4 EVA SNP Release 4 Short Genetic Variants from European Variant Archive Release 4 Variation and Repeats Description This track contains mappings of single nucleotide variants and small insertions and deletions (indels) from the European Variation Archive (EVA) Release 4 for the rat rn5 genome. The dbSNP database at NCBI no longer hosts non-human variants. Interpreting and Configuring the Graphical Display Variants are shown as single tick marks at most zoom levels. When viewing the track at or near base-level resolution, the displayed width of the SNP variant corresponds to the width of the variant in the reference sequence. Insertions are indicated by a single tick mark displayed between two nucleotides, single nucleotide polymorphisms are displayed as the width of a single base, and multiple nucleotide variants are represented by a block that spans two or more bases. The display is set to automatically collapse to dense visibility when there are more than 100k variants in the window. When the window size is more than 250k bp, the display is switched to density graph mode. Searching, details, and filtering Navigation to an individual variant can be accomplished by typing or copying the variant identifier (rsID) or the genomic coordinates into the Position/Search box on the Browser. A click on an item in the graphical display displays a page with data about that variant. Data fields include the Reference and Alternate Alleles, the class of the variant as reported by EVA, the source of the data, the amino acid change, if any, and the functional class as determined by UCSC's Variant Annotation Integrator. Variants can be filtered using the track controls to show subsets of the data by either EVA Sequence Ontology (SO) term, UCSC-generated functional effect, or by color, which bins the UCSC functional effects into general classes. Mouse-over Mousing over an item shows the ucscClass, which is the consequence according to the Variant Annotation Integrator, and the aaChange when one is available, which is the change in amino acid in HGVS.p terms. Items may have multiple ucscClasses, which will all be shown in the mouse-over in a comma-separated list. Likewise, multiple HGVS.p terms may be shown for each rsID separated by spaces describing all possible AA changes. Multiple items may appear due to different variant predictions on multiple gene transcripts. For all organisms the gene models used were the NCBI RefSeq curated when available, if not then ensembl genes, or finally UCSC mappings of RefSeq if neither of the previous models was possible. Track colors Variants are colored according to the most potentially deleterious functional effect prediction according to the Variant Annotation Integrator. Specific bins can be seen in the Methods section below. Color Variant Type Protein-altering variants and splice site variants Synonymous codon variants Non-coding transcript or Untranslated Region (UTR) variants Intergenic and intronic variants Sequence ontology (SO) Variants are classified by EVA into one of the following sequence ontology terms: substitution — A single nucleotide in the reference is replaced by another, alternate allele deletion — One or more nucleotides is deleted. The representation in the database is to display one additional nucleotide in both the Reference field (Ref) and the Alternate Allele field (Alt). E.g. a variant that is a deletion of an A maybe be represented as Ref = GA and Alt = G. insertion — One or more nucleotides is inserted. The representation in the database is to display one additional nucleotide in both the Reference field (Ref) and the Alternate Allele field (Alt). E.g. a variant that is an insertion of a T maybe be represented as Ref = G and Alt = GT delins — Similar to tandemRepeat, in that the runs of Ref and Alt Alleles are of different length, except that there is more than one type of nucleotide, e.g., Ref = CCAAAAACAAAAACA, Alt = ACAAAAAC. multipleNucleotideVariant — More than one nucleotide is substituted by an equal number of different nucleotides, e.g., Ref = AA, Alt = GC. sequence alteration — A parent term meant to signify a deviation from another sequence. Can be assigned to variants that have not been characterized yet. Methods Data were downloaded from the European Variation Archive EVA release 4 (2022-11-21) current_ids.vcf.gz files corresponding to the proper assembly. Chromosome names were converted to UCSC-style and the variants passed through the Variant Annotation Integrator to predict consequence. For every organism the NCBI RefSeq curated models were used when available, followed by ensembl genes, and finally UCSC mapping of RefSeq when neither of the previous models were possible. Variants were then colored according to their predicted consequence in the following fashion: Protein-altering variants and splice site variants - exon_loss_variant, frameshift_variant, inframe_deletion, inframe_insertion, initiator_codon_variant, missense_variant, splice_acceptor_variant, splice_donor_variant, splice_region_variant, stop_gained, stop_lost, coding_sequence_variant, transcript_ablation Synonymous codon variants - synonymous_variant, stop_retained_variant Non-coding transcript or Untranslated Region (UTR) variants - 5_prime_UTR_variant, 3_prime_UTR_variant, complex_transcript_variant, non_coding_transcript_exon_variant Intergenic and intronic variants - upstream_gene_variant, downstream_gene_variant, intron_variant, intergenic_variant, NMD_transcript_variant, no_sequence_alteration Sequence Ontology ("SO:") terms were converted to the variant classes, then the files were converted to BED, and then bigBed format. No functional annotations were provided by the EVA (e.g., missense, nonsense, etc). These were computed using UCSC's Variant Annotation Integrator (Hinrichs, et al., 2016). Amino-acid substitutions for missense variants are based on RefSeq alignments of mRNA transcripts, which do not always match the amino acids predicted from translating the genomic sequence. Therefore, in some instances, the variant and the genomic nucleotide and associated amino acid may be reversed. E.g., a Pro > Arg change from the perspective of the mRNA would be Arg > Pro from the persepective the genomic sequence. Also, in bosTau9, galGal5, rheMac8, danRer10 and danRer11 the mitochondrial sequence was removed or renamed to match UCSC. For complete documentation of the processing of these tracks, read the EVA Release 4 MakeDoc. Data Access Note: It is not recommeneded to use LiftOver to convert SNPs between assemblies, and more information about how to convert SNPs between assemblies can be found on the following FAQ entry. The data can be explored interactively with the Table Browser, or the Data Integrator. For automated analysis, the data may be queried from our REST API. Please refer to our mailing list archives for questions, or our Data Access FAQ for more information. For automated download and analysis, this annotation is stored in a bigBed file that can be downloaded from our download server. The file for this track is called evaSnp4.bb. Individual regions or the whole genome annotation can be obtained using our tool bigBedToBed which can be compiled from the source code or downloaded as a precompiled binary for your system. Instructions for downloading source code and binaries can be found here. The tool can also be used to obtain only features within a given range, e.g. bigBedToBed https://hgdownload.soe.ucsc.edu/gbdb/rn5/bbi/evaSnp4.bb -chrom=chr21 -start=0 -end=100000000 stdout Credits This track was produced from the European Variation Archive release 4 data. Consequences were predicted using UCSC's Variant Annotation Integrator and NCBI's RefSeq as well as ensembl gene models. References Cezard T, Cunningham F, Hunt SE, Koylass B, Kumar N, Saunders G, Shen A, Silva AF, Tsukanov K, Venkataraman S et al. The European Variation Archive: a FAIR resource of genomic variation for all species. Nucleic Acids Res. 2021 Oct 28:gkab960. doi:10.1093/nar/gkab960. Epub ahead of print. PMID: 34718739. PMID: PMC8728205. Hinrichs AS, Raney BJ, Speir ML, Rhead B, Casper J, Karolchik D, Kuhn RM, Rosenbloom KR, Zweig AS, Haussler D, Kent WJ. UCSC Data Integrator and Variant Annotation Integrator. Bioinformatics. 2016 May 1;32(9):1430-2. PMID: 26740527; PMC: PMC4848401 gc5BaseBw GC Percent GC Percent in 5-Base Windows Mapping and Sequencing Description The GC percent track shows the percentage of G (guanine) and C (cytosine) bases in 5-base windows. High GC content is typically associated with gene-rich areas. This track may be configured in a variety of ways to highlight different apsects of the displayed information. Click the "Graph configuration help" link for an explanation of the configuration options. Credits The data and presentation of this graph were prepared by Hiram Clawson. genscan Genscan Genes Genscan Gene Predictions Genes and Gene Predictions Description This track shows predictions from the Genscan program written by Chris Burge. The predictions are based on transcriptional, translational and donor/acceptor splicing signals as well as the length and compositional distributions of exons, introns and intergenic regions. For more information on the different gene tracks, see our Genes FAQ. Display Conventions and Configuration This track follows the display conventions for gene prediction tracks. The track description page offers the following filter and configuration options: Color track by codons: Select the genomic codons option to color and label each codon in a zoomed-in display to facilitate validation and comparison of gene predictions. Go to the Coloring Gene Predictions and Annotations by Codon page for more information about this feature. Methods For a description of the Genscan program and the model that underlies it, refer to Burge and Karlin (1997) in the References section below. The splice site models used are described in more detail in Burge (1998) below. Credits Thanks to Chris Burge for providing the Genscan program. References Burge C. Modeling Dependencies in Pre-mRNA Splicing Signals. In: Salzberg S, Searls D, Kasif S, editors. Computational Methods in Molecular Biology. Amsterdam: Elsevier Science; 1998. p. 127-163. Burge C, Karlin S. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 1997 Apr 25;268(1):78-94. PMID: 9149143 ucscToINSDC INSDC Accession at INSDC - International Nucleotide Sequence Database Collaboration Mapping and Sequencing Description This track associates UCSC Genome Browser chromosome names to accession names from the International Nucleotide Sequence Database Collaboration (INSDC). The data were downloaded from the NCBI assembly database. Credits The data for this track was prepared by Hiram Clawson. nestedRepeats Interrupted Rpts Fragments of Interrupted Repeats Joined by RepeatMasker ID Variation and Repeats Description This track shows joined fragments of interrupted repeats extracted from the output of the RepeatMasker program which screens DNA sequences for interspersed repeats and low complexity DNA sequences using the Repbase Update library of repeats from the Genetic Information Research Institute (GIRI). Repbase Update is described in Jurka (2000) in the References section below. The detailed annotations from RepeatMasker are in the RepeatMasker track. This track shows fragments of original repeat insertions which have been interrupted by insertions of younger repeats or through local rearrangements. The fragments are joined using the ID column of RepeatMasker output. Display Conventions and Configuration In pack or full mode, each interrupted repeat is displayed as boxes (fragments) joined by horizontal lines, labeled with the repeat name. If all fragments are on the same strand, arrows are added to the horizontal line to indicate the strand. In dense or squish mode, labels and arrows are omitted and in dense mode, all items are collapsed to fit on a single row. Items are shaded according to the average identity score of their fragments. Usually, the shade of an item is similar to the shades of its fragments unless some fragments are much more diverged than others. The score displayed above is the average identity score, clipped to a range of 50% - 100% and then mapped to the range 0 - 1000 for shading in the browser. Methods UCSC has used the most current versions of the RepeatMasker software and repeat libraries available to generate these data. Note that these versions may be newer than those that are publicly available on the Internet. Data are generated using the RepeatMasker -s flag. Additional flags may be used for certain organisms. See the FAQ for more information. Credits Thanks to Arian Smit, Robert Hubley and GIRI for providing the tools and repeat libraries used to generate this track. References Smit AFA, Hubley R, Green P. RepeatMasker Open-3.0. http://www.repeatmasker.org. 1996-2010. Repbase Update is described in: Jurka J. Repbase Update: a database and an electronic journal of repetitive elements. Trends Genet. 2000 Sep;16(9):418-420. PMID: 10973072 For a discussion of repeats in mammalian genomes, see: Smit AF. Interspersed repeats and other mementos of transposable elements in mammalian genomes. Curr Opin Genet Dev. 1999 Dec;9(6):657-63. PMID: 10607616 Smit AF. The origin of interspersed repeats in the human genome. Curr Opin Genet Dev. 1996 Dec;6(6):743-8. PMID: 8994846 microsat Microsatellite Microsatellites - Di-nucleotide and Tri-nucleotide Repeats Variation and Repeats Description This track displays regions that are likely to be useful as microsatellite markers. These are sequences of at least 15 perfect di-nucleotide and tri-nucleotide repeats and tend to be highly polymorphic in the population. Methods The data shown in this track are a subset of the Simple Repeats track, selecting only those repeats of period 2 and 3, with 100% identity and no indels and with at least 15 copies of the repeat. The Simple Repeats track is created using the Tandem Repeats Finder. For more information about this program, see Benson (1999). Credits Tandem Repeats Finder was written by Gary Benson. References Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999 Jan 15;27(2):573-80. PMID: 9862982; PMC: PMC148217 xenoMrna Other mRNAs Non-Rat mRNAs from GenBank mRNA and EST Description This track displays translated blat alignments of vertebrate and invertebrate mRNA in GenBank from organisms other than rat. Display Conventions and Configuration This track follows the display conventions for PSL alignment tracks. In dense display mode, the items that are more darkly shaded indicate matches of better quality. The strand information (+/-) for this track is in two parts. The first + indicates the orientation of the query sequence whose translated protein produced the match (here always 5' to 3', hence +). The second + or - indicates the orientation of the matching translated genomic sequence. Because the two orientations of a DNA sequence give different predicted protein sequences, there are four combinations. ++ is not the same as --, nor is +- the same as -+. The description page for this track has a filter that can be used to change the display mode, alter the color, and include/exclude a subset of items within the track. This may be helpful when many items are shown in the track display, especially when only some are relevant to the current task. To use the filter: Type a term in one or more of the text boxes to filter the mRNA display. For example, to apply the filter to all mRNAs expressed in a specific organ, type the name of the organ in the tissue box. To view the list of valid terms for each text box, consult the table in the Table Browser that corresponds to the factor on which you wish to filter. For example, the "tissue" table contains all the types of tissues that can be entered into the tissue text box. Multiple terms may be entered at once, separated by a space. Wildcards may also be used in the filter. If filtering on more than one value, choose the desired combination logic. If "and" is selected, only mRNAs that match all filter criteria will be highlighted. If "or" is selected, mRNAs that match any one of the filter criteria will be highlighted. Choose the color or display characteristic that should be used to highlight or include/exclude the filtered items. If "exclude" is chosen, the browser will not display mRNAs that match the filter criteria. If "include" is selected, the browser will display only those mRNAs that match the filter criteria. This track may also be configured to display codon coloring, a feature that allows the user to quickly compare mRNAs against the genomic sequence. For more information about this option, go to the Codon and Base Coloring for Alignment Tracks page. Several types of alignment gap may also be colored; for more information, go to the Alignment Insertion/Deletion Display Options page. Methods The mRNAs were aligned against the rat genome using translated blat. When a single mRNA aligned in multiple places, the alignment having the highest base identity was found. Only those alignments having a base identity level within 1% of the best and at least 25% base identity with the genomic sequence were kept. Credits The mRNA track was produced at UCSC from mRNA sequence data submitted to the international public sequence databases by scientists worldwide. References Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res. 2013 Jan;41(Database issue):D36-42. PMID: 23193287; PMC: PMC3531190 Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL. GenBank: update. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D23-6. PMID: 14681350; PMC: PMC308779 Kent WJ. BLAT - the BLAST-like alignment tool. Genome Res. 2002 Apr;12(4):656-64. PMID: 11932250; PMC: PMC187518 est Rat ESTs Rat ESTs Including Unspliced mRNA and EST Description This track shows alignments between rat expressed sequence tags (ESTs) in GenBank and the genome. ESTs are single-read sequences, typically about 500 bases in length, that usually represent fragments of transcribed genes. Display Conventions and Configuration This track follows the display conventions for PSL alignment tracks. In dense display mode, the items that are more darkly shaded indicate matches of better quality. The strand information (+/-) indicates the direction of the match between the EST and the matching genomic sequence. It bears no relationship to the direction of transcription of the RNA with which it might be associated. The description page for this track has a filter that can be used to change the display mode, alter the color, and include/exclude a subset of items within the track. This may be helpful when many items are shown in the track display, especially when only some are relevant to the current task. To use the filter: Type a term in one or more of the text boxes to filter the EST display. For example, to apply the filter to all ESTs expressed in a specific organ, type the name of the organ in the tissue box. To view the list of valid terms for each text box, consult the table in the Table Browser that corresponds to the factor on which you wish to filter. For example, the "tissue" table contains all the types of tissues that can be entered into the tissue text box. Multiple terms may be entered at once, separated by a space. Wildcards may also be used in the filter. If filtering on more than one value, choose the desired combination logic. If "and" is selected, only ESTs that match all filter criteria will be highlighted. If "or" is selected, ESTs that match any one of the filter criteria will be highlighted. Choose the color or display characteristic that should be used to highlight or include/exclude the filtered items. If "exclude" is chosen, the browser will not display ESTs that match the filter criteria. If "include" is selected, the browser will display only those ESTs that match the filter criteria. This track may also be configured to display base labeling, a feature that allows the user to display all bases in the aligning sequence or only those that differ from the genomic sequence. For more information about this option, go to the Base Coloring for Alignment Tracks page. Several types of alignment gap may also be colored; for more information, go to the Alignment Insertion/Deletion Display Options page. Methods To make an EST, RNA is isolated from cells and reverse transcribed into cDNA. Typically, the cDNA is cloned into a plasmid vector and a read is taken from the 5' and/or 3' primer. For most — but not all — ESTs, the reverse transcription is primed by an oligo-dT, which hybridizes with the poly-A tail of mature mRNA. The reverse transcriptase may or may not make it to the 5' end of the mRNA, which may or may not be degraded. In general, the 3' ESTs mark the end of transcription reasonably well, but the 5' ESTs may end at any point within the transcript. Some of the newer cap-selected libraries cover transcription start reasonably well. Before the cap-selection techniques emerged, some projects used random rather than poly-A priming in an attempt to retrieve sequence distant from the 3' end. These projects were successful at this, but as a side effect also deposited sequences from unprocessed mRNA and perhaps even genomic sequences into the EST databases. Even outside of the random-primed projects, there is a degree of non-mRNA contamination. Because of this, a single unspliced EST should be viewed with considerable skepticism. To generate this track, rat ESTs from GenBank were aligned against the genome using blat. Note that the maximum intron length allowed by blat is 750,000 bases, which may eliminate some ESTs with very long introns that might otherwise align. When a single EST aligned in multiple places, the alignment having the highest base identity was identified. Only alignments having a base identity level within 0.5% of the best and at least 96% base identity with the genomic sequence were kept. Credits This track was produced at UCSC from EST sequence data submitted to the international public sequence databases by scientists worldwide. References Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res. 2013 Jan;41(Database issue):D36-42. PMID: 23193287; PMC: PMC3531190 Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL. GenBank: update. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D23-6. PMID: 14681350; PMC: PMC308779 Kent WJ. BLAT - the BLAST-like alignment tool. Genome Res. 2002 Apr;12(4):656-64. PMID: 11932250; PMC: PMC187518 simpleRepeat Simple Repeats Simple Tandem Repeats by TRF Variation and Repeats Description This track displays simple tandem repeats (possibly imperfect repeats) located by Tandem Repeats Finder (TRF) which is specialized for this purpose. These repeats can occur within coding regions of genes and may be quite polymorphic. Repeat expansions are sometimes associated with specific diseases. Methods For more information about the TRF program, see Benson (1999). Credits TRF was written by Gary Benson. References Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999 Jan 15;27(2):573-80. PMID: 9862982; PMC: PMC148217 windowmaskerSdust WM + SDust Genomic Intervals Masked by WindowMasker + SDust Variation and Repeats Description This track depicts masked sequence as determined by WindowMasker. The WindowMasker tool is included in the NCBI C++ toolkit. The source code for the entire toolkit is available from the NCBI FTP site. Methods To create this track, WindowMasker was run with the following parameters: windowmasker -mk_counts true -input rn5.fa -output wm_counts windowmasker -ustat wm_counts -sdust true -input rn5.fa -output repeats.bed The repeats.bed (BED3) file was loaded into the "windowmaskerSdust" table for this track. References Morgulis A, Gertz EM, Schäffer AA, Agarwala R. WindowMasker: window-based masker for sequenced genomes. Bioinformatics. 2006 Jan 15;22(2):134-41. PMID: 16287941 chainNetMm10 Mouse Chain/Net Mouse (Dec. 2011 (GRCm38/mm10)), Chain and Net Alignments Comparative Genomics Description This track shows regions of the genome that are alignable to other genomes ("chain" subtracks) or in synteny ("net" subtracks). The alignable parts are shown with thick blocks that look like exons. Non-alignable parts between these are shown like introns. Chain Track The chain track shows alignments of mouse (Dec. 2011 (GRCm38/mm10)) to the rat genome using a gap scoring system that allows longer gaps than traditional affine gap scoring systems. It can also tolerate gaps in both mouse and rat simultaneously. These "double-sided" gaps can be caused by local inversions and overlapping deletions in both species. The chain track displays boxes joined together by either single or double lines. The boxes represent aligning regions. Single lines indicate gaps that are largely due to a deletion in the mouse assembly or an insertion in the rat assembly. Double lines represent more complex gaps that involve substantial sequence in both species. This may result from inversions, overlapping deletions, an abundance of local mutation, or an unsequenced gap in one species. In cases where multiple chains align over a particular region of the rat genome, the chains with single-lined gaps are often due to processed pseudogenes, while chains with double-lined gaps are more often due to paralogs and unprocessed pseudogenes. In the "pack" and "full" display modes, the individual feature names indicate the chromosome, strand, and location (in thousands) of the match for each matching alignment. Net Track The net track shows the best mouse/rat chain for every part of the rat genome. It is useful for finding syntenic regions, possibly orthologs, and for studying genome rearrangement. The mouse sequence used in this annotation is from the Dec. 2011 (GRCm38/mm10) assembly. Display Conventions and Configuration Chain Track By default, the chains to chromosome-based assemblies are colored based on which chromosome they map to in the aligning organism. To turn off the coloring, check the "off" button next to: Color track based on chromosome. To display only the chains of one chromosome in the aligning organism, enter the name of that chromosome (e.g. chr4) in box next to: Filter by chromosome. Net Track In full display mode, the top-level (level 1) chains are the largest, highest-scoring chains that span this region. In many cases gaps exist in the top-level chain. When possible, these are filled in by other chains that are displayed at level 2. The gaps in level 2 chains may be filled by level 3 chains and so forth. In the graphical display, the boxes represent ungapped alignments; the lines represent gaps. Click on a box to view detailed information about the chain as a whole; click on a line to display information about the gap. The detailed information is useful in determining the cause of the gap or, for lower level chains, the genomic rearrangement. Individual items in the display are categorized as one of four types (other than gap): Top - the best, longest match. Displayed on level 1. Syn - line-ups on the same chromosome as the gap in the level above it. Inv - a line-up on the same chromosome as the gap above it, but in the opposite orientation. NonSyn - a match to a chromosome different from the gap in the level above. Methods Chain track Transposons that have been inserted since the mouse/rat split were removed from the assemblies. The abbreviated genomes were aligned with lastz, and the transposons were added back in. The resulting alignments were converted into axt format using the lavToAxt program. The axt alignments were fed into axtChain, which organizes all alignments between a single mouse chromosome and a single rat chromosome into a group and creates a kd-tree out of the gapless subsections (blocks) of the alignments. A dynamic program was then run over the kd-trees to find the maximally scoring chains of these blocks. The following matrix was used:  ACGT A100-139-54-170 C-13995-83-54 G-54-8395-139 T-170-54-139100 Chains scoring below a minimum score of "5000" were discarded; the remaining chains are displayed in this track. The linear gap matrix used with axtChain: -linearGap=medium tableSize 11 smallSize 111 position 1 2 3 11 111 2111 12111 32111 72111 152111 252111 qGap 350 425 450 600 900 2900 22900 57900 117900 217900 317900 tGap 350 425 450 600 900 2900 22900 57900 117900 217900 317900 bothGap 750 825 850 1000 1300 3300 23300 58300 118300 218300 318300 Net track Chains were derived from lastz alignments, using the methods described on the chain tracks description pages, and sorted with the highest-scoring chains in the genome ranked first. The program chainNet was then used to place the chains one at a time, trimming them as necessary to fit into sections not already covered by a higher-scoring chain. During this process, a natural hierarchy emerged in which a chain that filled a gap in a higher-scoring chain was placed underneath that chain. The program netSyntenic was used to fill in information about the relationship between higher- and lower-level chains, such as whether a lower-level chain was syntenic or inverted relative to the higher-level chain. The program netClass was then used to fill in how much of the gaps and chains contained Ns (sequencing gaps) in one or both species and how much was filled with transposons inserted before and after the two organisms diverged. Credits Lastz (previously known as blastz) was developed at Pennsylvania State University by Minmei Hou, Scott Schwartz, Zheng Zhang, and Webb Miller with advice from Ross Hardison. Lineage-specific repeats were identified by Arian Smit and his RepeatMasker program. The axtChain program was developed at the University of California at Santa Cruz by Jim Kent with advice from Webb Miller and David Haussler. The browser display and database storage of the chains and nets were created by Robert Baertsch and Jim Kent. The chainNet, netSyntenic, and netClass programs were developed at the University of California Santa Cruz by Jim Kent. References Harris, R.S. (2007) Improved pairwise alignment of genomic DNA Ph.D. Thesis, The Pennsylvania State University Chiaromonte F, Yap VB, Miller W. Scoring pairwise genomic sequence alignments. Pac Symp Biocomput. 2002:115-26. PMID: 11928468 Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D. Evolution's cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11484-9. PMID: 14500911; PMC: PMC208784 Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, Haussler D, Miller W. Human-mouse alignments with BLASTZ. Genome Res. 2003 Jan;13(1):103-7. PMID: 12529312; PMC: PMC430961 chainNetMm10Viewnet Net Mouse (Dec. 2011 (GRCm38/mm10)), Chain and Net Alignments Comparative Genomics netMm10 Mouse Net Mouse (Dec. 2011 (GRCm38/mm10)) Alignment Net Comparative Genomics Description This track shows regions of the genome that are alignable to other genomes ("chain" subtracks) or in synteny ("net" subtracks). The alignable parts are shown with thick blocks that look like exons. Non-alignable parts between these are shown like introns. Chain Track The chain track shows alignments of mouse (Dec. 2011 (GRCm38/mm10)) to the rat genome using a gap scoring system that allows longer gaps than traditional affine gap scoring systems. It can also tolerate gaps in both mouse and rat simultaneously. These "double-sided" gaps can be caused by local inversions and overlapping deletions in both species. The chain track displays boxes joined together by either single or double lines. The boxes represent aligning regions. Single lines indicate gaps that are largely due to a deletion in the mouse assembly or an insertion in the rat assembly. Double lines represent more complex gaps that involve substantial sequence in both species. This may result from inversions, overlapping deletions, an abundance of local mutation, or an unsequenced gap in one species. In cases where multiple chains align over a particular region of the rat genome, the chains with single-lined gaps are often due to processed pseudogenes, while chains with double-lined gaps are more often due to paralogs and unprocessed pseudogenes. In the "pack" and "full" display modes, the individual feature names indicate the chromosome, strand, and location (in thousands) of the match for each matching alignment. Net Track The net track shows the best mouse/rat chain for every part of the rat genome. It is useful for finding syntenic regions, possibly orthologs, and for studying genome rearrangement. The mouse sequence used in this annotation is from the Dec. 2011 (GRCm38/mm10) assembly. Display Conventions and Configuration Chain Track By default, the chains to chromosome-based assemblies are colored based on which chromosome they map to in the aligning organism. To turn off the coloring, check the "off" button next to: Color track based on chromosome. To display only the chains of one chromosome in the aligning organism, enter the name of that chromosome (e.g. chr4) in box next to: Filter by chromosome. Net Track In full display mode, the top-level (level 1) chains are the largest, highest-scoring chains that span this region. In many cases gaps exist in the top-level chain. When possible, these are filled in by other chains that are displayed at level 2. The gaps in level 2 chains may be filled by level 3 chains and so forth. In the graphical display, the boxes represent ungapped alignments; the lines represent gaps. Click on a box to view detailed information about the chain as a whole; click on a line to display information about the gap. The detailed information is useful in determining the cause of the gap or, for lower level chains, the genomic rearrangement. Individual items in the display are categorized as one of four types (other than gap): Top - the best, longest match. Displayed on level 1. Syn - line-ups on the same chromosome as the gap in the level above it. Inv - a line-up on the same chromosome as the gap above it, but in the opposite orientation. NonSyn - a match to a chromosome different from the gap in the level above. Methods Chain track Transposons that have been inserted since the mouse/rat split were removed from the assemblies. The abbreviated genomes were aligned with lastz, and the transposons were added back in. The resulting alignments were converted into axt format using the lavToAxt program. The axt alignments were fed into axtChain, which organizes all alignments between a single mouse chromosome and a single rat chromosome into a group and creates a kd-tree out of the gapless subsections (blocks) of the alignments. A dynamic program was then run over the kd-trees to find the maximally scoring chains of these blocks. The following matrix was used:  ACGT A100-139-54-170 C-13995-83-54 G-54-8395-139 T-170-54-139100 Chains scoring below a minimum score of "5000" were discarded; the remaining chains are displayed in this track. The linear gap matrix used with axtChain: -linearGap=medium tableSize 11 smallSize 111 position 1 2 3 11 111 2111 12111 32111 72111 152111 252111 qGap 350 425 450 600 900 2900 22900 57900 117900 217900 317900 tGap 350 425 450 600 900 2900 22900 57900 117900 217900 317900 bothGap 750 825 850 1000 1300 3300 23300 58300 118300 218300 318300 Net track Chains were derived from lastz alignments, using the methods described on the chain tracks description pages, and sorted with the highest-scoring chains in the genome ranked first. The program chainNet was then used to place the chains one at a time, trimming them as necessary to fit into sections not already covered by a higher-scoring chain. During this process, a natural hierarchy emerged in which a chain that filled a gap in a higher-scoring chain was placed underneath that chain. The program netSyntenic was used to fill in information about the relationship between higher- and lower-level chains, such as whether a lower-level chain was syntenic or inverted relative to the higher-level chain. The program netClass was then used to fill in how much of the gaps and chains contained Ns (sequencing gaps) in one or both species and how much was filled with transposons inserted before and after the two organisms diverged. Credits Lastz (previously known as blastz) was developed at Pennsylvania State University by Minmei Hou, Scott Schwartz, Zheng Zhang, and Webb Miller with advice from Ross Hardison. Lineage-specific repeats were identified by Arian Smit and his RepeatMasker program. The axtChain program was developed at the University of California at Santa Cruz by Jim Kent with advice from Webb Miller and David Haussler. The browser display and database storage of the chains and nets were created by Robert Baertsch and Jim Kent. The chainNet, netSyntenic, and netClass programs were developed at the University of California Santa Cruz by Jim Kent. References Harris, R.S. (2007) Improved pairwise alignment of genomic DNA Ph.D. Thesis, The Pennsylvania State University Chiaromonte F, Yap VB, Miller W. Scoring pairwise genomic sequence alignments. Pac Symp Biocomput. 2002:115-26. PMID: 11928468 Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D. Evolution's cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11484-9. PMID: 14500911; PMC: PMC208784 Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, Haussler D, Miller W. Human-mouse alignments with BLASTZ. Genome Res. 2003 Jan;13(1):103-7. PMID: 12529312; PMC: PMC430961 chainNetMm10Viewchain Chain Mouse (Dec. 2011 (GRCm38/mm10)), Chain and Net Alignments Comparative Genomics chainMm10 Mouse Chain Mouse (Dec. 2011 (GRCm38/mm10)) Chained Alignments Comparative Genomics Description This track shows regions of the genome that are alignable to other genomes ("chain" subtracks) or in synteny ("net" subtracks). The alignable parts are shown with thick blocks that look like exons. Non-alignable parts between these are shown like introns. Chain Track The chain track shows alignments of mouse (Dec. 2011 (GRCm38/mm10)) to the rat genome using a gap scoring system that allows longer gaps than traditional affine gap scoring systems. It can also tolerate gaps in both mouse and rat simultaneously. These "double-sided" gaps can be caused by local inversions and overlapping deletions in both species. The chain track displays boxes joined together by either single or double lines. The boxes represent aligning regions. Single lines indicate gaps that are largely due to a deletion in the mouse assembly or an insertion in the rat assembly. Double lines represent more complex gaps that involve substantial sequence in both species. This may result from inversions, overlapping deletions, an abundance of local mutation, or an unsequenced gap in one species. In cases where multiple chains align over a particular region of the rat genome, the chains with single-lined gaps are often due to processed pseudogenes, while chains with double-lined gaps are more often due to paralogs and unprocessed pseudogenes. In the "pack" and "full" display modes, the individual feature names indicate the chromosome, strand, and location (in thousands) of the match for each matching alignment. Net Track The net track shows the best mouse/rat chain for every part of the rat genome. It is useful for finding syntenic regions, possibly orthologs, and for studying genome rearrangement. The mouse sequence used in this annotation is from the Dec. 2011 (GRCm38/mm10) assembly. Display Conventions and Configuration Chain Track By default, the chains to chromosome-based assemblies are colored based on which chromosome they map to in the aligning organism. To turn off the coloring, check the "off" button next to: Color track based on chromosome. To display only the chains of one chromosome in the aligning organism, enter the name of that chromosome (e.g. chr4) in box next to: Filter by chromosome. Net Track In full display mode, the top-level (level 1) chains are the largest, highest-scoring chains that span this region. In many cases gaps exist in the top-level chain. When possible, these are filled in by other chains that are displayed at level 2. The gaps in level 2 chains may be filled by level 3 chains and so forth. In the graphical display, the boxes represent ungapped alignments; the lines represent gaps. Click on a box to view detailed information about the chain as a whole; click on a line to display information about the gap. The detailed information is useful in determining the cause of the gap or, for lower level chains, the genomic rearrangement. Individual items in the display are categorized as one of four types (other than gap): Top - the best, longest match. Displayed on level 1. Syn - line-ups on the same chromosome as the gap in the level above it. Inv - a line-up on the same chromosome as the gap above it, but in the opposite orientation. NonSyn - a match to a chromosome different from the gap in the level above. Methods Chain track Transposons that have been inserted since the mouse/rat split were removed from the assemblies. The abbreviated genomes were aligned with lastz, and the transposons were added back in. The resulting alignments were converted into axt format using the lavToAxt program. The axt alignments were fed into axtChain, which organizes all alignments between a single mouse chromosome and a single rat chromosome into a group and creates a kd-tree out of the gapless subsections (blocks) of the alignments. A dynamic program was then run over the kd-trees to find the maximally scoring chains of these blocks. The following matrix was used:  ACGT A100-139-54-170 C-13995-83-54 G-54-8395-139 T-170-54-139100 Chains scoring below a minimum score of "5000" were discarded; the remaining chains are displayed in this track. The linear gap matrix used with axtChain: -linearGap=medium tableSize 11 smallSize 111 position 1 2 3 11 111 2111 12111 32111 72111 152111 252111 qGap 350 425 450 600 900 2900 22900 57900 117900 217900 317900 tGap 350 425 450 600 900 2900 22900 57900 117900 217900 317900 bothGap 750 825 850 1000 1300 3300 23300 58300 118300 218300 318300 Net track Chains were derived from lastz alignments, using the methods described on the chain tracks description pages, and sorted with the highest-scoring chains in the genome ranked first. The program chainNet was then used to place the chains one at a time, trimming them as necessary to fit into sections not already covered by a higher-scoring chain. During this process, a natural hierarchy emerged in which a chain that filled a gap in a higher-scoring chain was placed underneath that chain. The program netSyntenic was used to fill in information about the relationship between higher- and lower-level chains, such as whether a lower-level chain was syntenic or inverted relative to the higher-level chain. The program netClass was then used to fill in how much of the gaps and chains contained Ns (sequencing gaps) in one or both species and how much was filled with transposons inserted before and after the two organisms diverged. Credits Lastz (previously known as blastz) was developed at Pennsylvania State University by Minmei Hou, Scott Schwartz, Zheng Zhang, and Webb Miller with advice from Ross Hardison. Lineage-specific repeats were identified by Arian Smit and his RepeatMasker program. The axtChain program was developed at the University of California at Santa Cruz by Jim Kent with advice from Webb Miller and David Haussler. The browser display and database storage of the chains and nets were created by Robert Baertsch and Jim Kent. The chainNet, netSyntenic, and netClass programs were developed at the University of California Santa Cruz by Jim Kent. References Harris, R.S. (2007) Improved pairwise alignment of genomic DNA Ph.D. Thesis, The Pennsylvania State University Chiaromonte F, Yap VB, Miller W. Scoring pairwise genomic sequence alignments. Pac Symp Biocomput. 2002:115-26. PMID: 11928468 Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D. Evolution's cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11484-9. PMID: 14500911; PMC: PMC208784 Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, Haussler D, Miller W. Human-mouse alignments with BLASTZ. Genome Res. 2003 Jan;13(1):103-7. PMID: 12529312; PMC: PMC430961 chainNetRheMac3 Rhesus Chain/Net Rhesus (Oct. 2010 (BGI CR_1.0/rheMac3)), Chain and Net Alignments Comparative Genomics Description This track shows regions of the genome that are alignable to other genomes ("chain" subtracks) or in synteny ("net" subtracks). The alignable parts are shown with thick blocks that look like exons. Non-alignable parts between these are shown like introns. Chain Track The chain track shows alignments of rhesus (Oct. 2010 (BGI CR_1.0/rheMac3)) to the rat genome using a gap scoring system that allows longer gaps than traditional affine gap scoring systems. It can also tolerate gaps in both rhesus and rat simultaneously. These "double-sided" gaps can be caused by local inversions and overlapping deletions in both species. The chain track displays boxes joined together by either single or double lines. The boxes represent aligning regions. Single lines indicate gaps that are largely due to a deletion in the rhesus assembly or an insertion in the rat assembly. Double lines represent more complex gaps that involve substantial sequence in both species. This may result from inversions, overlapping deletions, an abundance of local mutation, or an unsequenced gap in one species. In cases where multiple chains align over a particular region of the rat genome, the chains with single-lined gaps are often due to processed pseudogenes, while chains with double-lined gaps are more often due to paralogs and unprocessed pseudogenes. In the "pack" and "full" display modes, the individual feature names indicate the chromosome, strand, and location (in thousands) of the match for each matching alignment. Net Track The net track shows the best rhesus/rat chain for every part of the rat genome. It is useful for finding syntenic regions, possibly orthologs, and for studying genome rearrangement. The rhesus sequence used in this annotation is from the Oct. 2010 (BGI CR_1.0/rheMac3) assembly. Display Conventions and Configuration Chain Track By default, the chains to chromosome-based assemblies are colored based on which chromosome they map to in the aligning organism. To turn off the coloring, check the "off" button next to: Color track based on chromosome. To display only the chains of one chromosome in the aligning organism, enter the name of that chromosome (e.g. chr4) in box next to: Filter by chromosome. Net Track In full display mode, the top-level (level 1) chains are the largest, highest-scoring chains that span this region. In many cases gaps exist in the top-level chain. When possible, these are filled in by other chains that are displayed at level 2. The gaps in level 2 chains may be filled by level 3 chains and so forth. In the graphical display, the boxes represent ungapped alignments; the lines represent gaps. Click on a box to view detailed information about the chain as a whole; click on a line to display information about the gap. The detailed information is useful in determining the cause of the gap or, for lower level chains, the genomic rearrangement. Individual items in the display are categorized as one of four types (other than gap): Top - the best, longest match. Displayed on level 1. Syn - line-ups on the same chromosome as the gap in the level above it. Inv - a line-up on the same chromosome as the gap above it, but in the opposite orientation. NonSyn - a match to a chromosome different from the gap in the level above. Methods Chain track Transposons that have been inserted since the rhesus/rat split were removed from the assemblies. The abbreviated genomes were aligned with lastz, and the transposons were added back in. The resulting alignments were converted into axt format using the lavToAxt program. The axt alignments were fed into axtChain, which organizes all alignments between a single rhesus chromosome and a single rat chromosome into a group and creates a kd-tree out of the gapless subsections (blocks) of the alignments. A dynamic program was then run over the kd-trees to find the maximally scoring chains of these blocks. The following matrix was used:  ACGT A91-114-31-123 C-114100-125-31 G-31-125100-114 T-123-31-11491 Chains scoring below a minimum score of "3000" were discarded; the remaining chains are displayed in this track. The linear gap matrix used with axtChain: -linearGap=medium tableSize 11 smallSize 111 position 1 2 3 11 111 2111 12111 32111 72111 152111 252111 qGap 350 425 450 600 900 2900 22900 57900 117900 217900 317900 tGap 350 425 450 600 900 2900 22900 57900 117900 217900 317900 bothGap 750 825 850 1000 1300 3300 23300 58300 118300 218300 318300 Net track Chains were derived from lastz alignments, using the methods described on the chain tracks description pages, and sorted with the highest-scoring chains in the genome ranked first. The program chainNet was then used to place the chains one at a time, trimming them as necessary to fit into sections not already covered by a higher-scoring chain. During this process, a natural hierarchy emerged in which a chain that filled a gap in a higher-scoring chain was placed underneath that chain. The program netSyntenic was used to fill in information about the relationship between higher- and lower-level chains, such as whether a lower-level chain was syntenic or inverted relative to the higher-level chain. The program netClass was then used to fill in how much of the gaps and chains contained Ns (sequencing gaps) in one or both species and how much was filled with transposons inserted before and after the two organisms diverged. Credits Lastz (previously known as blastz) was developed at Pennsylvania State University by Minmei Hou, Scott Schwartz, Zheng Zhang, and Webb Miller with advice from Ross Hardison. Lineage-specific repeats were identified by Arian Smit and his RepeatMasker program. The axtChain program was developed at the University of California at Santa Cruz by Jim Kent with advice from Webb Miller and David Haussler. The browser display and database storage of the chains and nets were created by Robert Baertsch and Jim Kent. The chainNet, netSyntenic, and netClass programs were developed at the University of California Santa Cruz by Jim Kent. References Harris, R.S. (2007) Improved pairwise alignment of genomic DNA Ph.D. Thesis, The Pennsylvania State University Chiaromonte F, Yap VB, Miller W. Scoring pairwise genomic sequence alignments. Pac Symp Biocomput. 2002:115-26. PMID: 11928468 Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D. Evolution's cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11484-9. PMID: 14500911; PMC: PMC208784 Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, Haussler D, Miller W. Human-mouse alignments with BLASTZ. Genome Res. 2003 Jan;13(1):103-7. PMID: 12529312; PMC: PMC430961 chainNetRheMac3Viewnet Net Rhesus (Oct. 2010 (BGI CR_1.0/rheMac3)), Chain and Net Alignments Comparative Genomics netRheMac3 Rhesus Net Rhesus (Oct. 2010 (BGI CR_1.0/rheMac3)) Alignment net Comparative Genomics Description This track shows regions of the genome that are alignable to other genomes ("chain" subtracks) or in synteny ("net" subtracks). The alignable parts are shown with thick blocks that look like exons. Non-alignable parts between these are shown like introns. Chain Track The chain track shows alignments of rhesus (Oct. 2010 (BGI CR_1.0/rheMac3)) to the rat genome using a gap scoring system that allows longer gaps than traditional affine gap scoring systems. It can also tolerate gaps in both rhesus and rat simultaneously. These "double-sided" gaps can be caused by local inversions and overlapping deletions in both species. The chain track displays boxes joined together by either single or double lines. The boxes represent aligning regions. Single lines indicate gaps that are largely due to a deletion in the rhesus assembly or an insertion in the rat assembly. Double lines represent more complex gaps that involve substantial sequence in both species. This may result from inversions, overlapping deletions, an abundance of local mutation, or an unsequenced gap in one species. In cases where multiple chains align over a particular region of the rat genome, the chains with single-lined gaps are often due to processed pseudogenes, while chains with double-lined gaps are more often due to paralogs and unprocessed pseudogenes. In the "pack" and "full" display modes, the individual feature names indicate the chromosome, strand, and location (in thousands) of the match for each matching alignment. Net Track The net track shows the best rhesus/rat chain for every part of the rat genome. It is useful for finding syntenic regions, possibly orthologs, and for studying genome rearrangement. The rhesus sequence used in this annotation is from the Oct. 2010 (BGI CR_1.0/rheMac3) assembly. Display Conventions and Configuration Chain Track By default, the chains to chromosome-based assemblies are colored based on which chromosome they map to in the aligning organism. To turn off the coloring, check the "off" button next to: Color track based on chromosome. To display only the chains of one chromosome in the aligning organism, enter the name of that chromosome (e.g. chr4) in box next to: Filter by chromosome. Net Track In full display mode, the top-level (level 1) chains are the largest, highest-scoring chains that span this region. In many cases gaps exist in the top-level chain. When possible, these are filled in by other chains that are displayed at level 2. The gaps in level 2 chains may be filled by level 3 chains and so forth. In the graphical display, the boxes represent ungapped alignments; the lines represent gaps. Click on a box to view detailed information about the chain as a whole; click on a line to display information about the gap. The detailed information is useful in determining the cause of the gap or, for lower level chains, the genomic rearrangement. Individual items in the display are categorized as one of four types (other than gap): Top - the best, longest match. Displayed on level 1. Syn - line-ups on the same chromosome as the gap in the level above it. Inv - a line-up on the same chromosome as the gap above it, but in the opposite orientation. NonSyn - a match to a chromosome different from the gap in the level above. Methods Chain track Transposons that have been inserted since the rhesus/rat split were removed from the assemblies. The abbreviated genomes were aligned with lastz, and the transposons were added back in. The resulting alignments were converted into axt format using the lavToAxt program. The axt alignments were fed into axtChain, which organizes all alignments between a single rhesus chromosome and a single rat chromosome into a group and creates a kd-tree out of the gapless subsections (blocks) of the alignments. A dynamic program was then run over the kd-trees to find the maximally scoring chains of these blocks. The following matrix was used:  ACGT A91-114-31-123 C-114100-125-31 G-31-125100-114 T-123-31-11491 Chains scoring below a minimum score of "3000" were discarded; the remaining chains are displayed in this track. The linear gap matrix used with axtChain: -linearGap=medium tableSize 11 smallSize 111 position 1 2 3 11 111 2111 12111 32111 72111 152111 252111 qGap 350 425 450 600 900 2900 22900 57900 117900 217900 317900 tGap 350 425 450 600 900 2900 22900 57900 117900 217900 317900 bothGap 750 825 850 1000 1300 3300 23300 58300 118300 218300 318300 Net track Chains were derived from lastz alignments, using the methods described on the chain tracks description pages, and sorted with the highest-scoring chains in the genome ranked first. The program chainNet was then used to place the chains one at a time, trimming them as necessary to fit into sections not already covered by a higher-scoring chain. During this process, a natural hierarchy emerged in which a chain that filled a gap in a higher-scoring chain was placed underneath that chain. The program netSyntenic was used to fill in information about the relationship between higher- and lower-level chains, such as whether a lower-level chain was syntenic or inverted relative to the higher-level chain. The program netClass was then used to fill in how much of the gaps and chains contained Ns (sequencing gaps) in one or both species and how much was filled with transposons inserted before and after the two organisms diverged. Credits Lastz (previously known as blastz) was developed at Pennsylvania State University by Minmei Hou, Scott Schwartz, Zheng Zhang, and Webb Miller with advice from Ross Hardison. Lineage-specific repeats were identified by Arian Smit and his RepeatMasker program. The axtChain program was developed at the University of California at Santa Cruz by Jim Kent with advice from Webb Miller and David Haussler. The browser display and database storage of the chains and nets were created by Robert Baertsch and Jim Kent. The chainNet, netSyntenic, and netClass programs were developed at the University of California Santa Cruz by Jim Kent. References Harris, R.S. (2007) Improved pairwise alignment of genomic DNA Ph.D. Thesis, The Pennsylvania State University Chiaromonte F, Yap VB, Miller W. Scoring pairwise genomic sequence alignments. Pac Symp Biocomput. 2002:115-26. PMID: 11928468 Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D. Evolution's cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11484-9. PMID: 14500911; PMC: PMC208784 Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, Haussler D, Miller W. Human-mouse alignments with BLASTZ. Genome Res. 2003 Jan;13(1):103-7. PMID: 12529312; PMC: PMC430961 chainNetRheMac3Viewchain Chain Rhesus (Oct. 2010 (BGI CR_1.0/rheMac3)), Chain and Net Alignments Comparative Genomics chainRheMac3 Rhesus Chain Rhesus (Oct. 2010 (BGI CR_1.0/rheMac3)) Chained Alignments Comparative Genomics Description This track shows regions of the genome that are alignable to other genomes ("chain" subtracks) or in synteny ("net" subtracks). The alignable parts are shown with thick blocks that look like exons. Non-alignable parts between these are shown like introns. Chain Track The chain track shows alignments of rhesus (Oct. 2010 (BGI CR_1.0/rheMac3)) to the rat genome using a gap scoring system that allows longer gaps than traditional affine gap scoring systems. It can also tolerate gaps in both rhesus and rat simultaneously. These "double-sided" gaps can be caused by local inversions and overlapping deletions in both species. The chain track displays boxes joined together by either single or double lines. The boxes represent aligning regions. Single lines indicate gaps that are largely due to a deletion in the rhesus assembly or an insertion in the rat assembly. Double lines represent more complex gaps that involve substantial sequence in both species. This may result from inversions, overlapping deletions, an abundance of local mutation, or an unsequenced gap in one species. In cases where multiple chains align over a particular region of the rat genome, the chains with single-lined gaps are often due to processed pseudogenes, while chains with double-lined gaps are more often due to paralogs and unprocessed pseudogenes. In the "pack" and "full" display modes, the individual feature names indicate the chromosome, strand, and location (in thousands) of the match for each matching alignment. Net Track The net track shows the best rhesus/rat chain for every part of the rat genome. It is useful for finding syntenic regions, possibly orthologs, and for studying genome rearrangement. The rhesus sequence used in this annotation is from the Oct. 2010 (BGI CR_1.0/rheMac3) assembly. Display Conventions and Configuration Chain Track By default, the chains to chromosome-based assemblies are colored based on which chromosome they map to in the aligning organism. To turn off the coloring, check the "off" button next to: Color track based on chromosome. To display only the chains of one chromosome in the aligning organism, enter the name of that chromosome (e.g. chr4) in box next to: Filter by chromosome. Net Track In full display mode, the top-level (level 1) chains are the largest, highest-scoring chains that span this region. In many cases gaps exist in the top-level chain. When possible, these are filled in by other chains that are displayed at level 2. The gaps in level 2 chains may be filled by level 3 chains and so forth. In the graphical display, the boxes represent ungapped alignments; the lines represent gaps. Click on a box to view detailed information about the chain as a whole; click on a line to display information about the gap. The detailed information is useful in determining the cause of the gap or, for lower level chains, the genomic rearrangement. Individual items in the display are categorized as one of four types (other than gap): Top - the best, longest match. Displayed on level 1. Syn - line-ups on the same chromosome as the gap in the level above it. Inv - a line-up on the same chromosome as the gap above it, but in the opposite orientation. NonSyn - a match to a chromosome different from the gap in the level above. Methods Chain track Transposons that have been inserted since the rhesus/rat split were removed from the assemblies. The abbreviated genomes were aligned with lastz, and the transposons were added back in. The resulting alignments were converted into axt format using the lavToAxt program. The axt alignments were fed into axtChain, which organizes all alignments between a single rhesus chromosome and a single rat chromosome into a group and creates a kd-tree out of the gapless subsections (blocks) of the alignments. A dynamic program was then run over the kd-trees to find the maximally scoring chains of these blocks. The following matrix was used:  ACGT A91-114-31-123 C-114100-125-31 G-31-125100-114 T-123-31-11491 Chains scoring below a minimum score of "3000" were discarded; the remaining chains are displayed in this track. The linear gap matrix used with axtChain: -linearGap=medium tableSize 11 smallSize 111 position 1 2 3 11 111 2111 12111 32111 72111 152111 252111 qGap 350 425 450 600 900 2900 22900 57900 117900 217900 317900 tGap 350 425 450 600 900 2900 22900 57900 117900 217900 317900 bothGap 750 825 850 1000 1300 3300 23300 58300 118300 218300 318300 Net track Chains were derived from lastz alignments, using the methods described on the chain tracks description pages, and sorted with the highest-scoring chains in the genome ranked first. The program chainNet was then used to place the chains one at a time, trimming them as necessary to fit into sections not already covered by a higher-scoring chain. During this process, a natural hierarchy emerged in which a chain that filled a gap in a higher-scoring chain was placed underneath that chain. The program netSyntenic was used to fill in information about the relationship between higher- and lower-level chains, such as whether a lower-level chain was syntenic or inverted relative to the higher-level chain. The program netClass was then used to fill in how much of the gaps and chains contained Ns (sequencing gaps) in one or both species and how much was filled with transposons inserted before and after the two organisms diverged. Credits Lastz (previously known as blastz) was developed at Pennsylvania State University by Minmei Hou, Scott Schwartz, Zheng Zhang, and Webb Miller with advice from Ross Hardison. Lineage-specific repeats were identified by Arian Smit and his RepeatMasker program. The axtChain program was developed at the University of California at Santa Cruz by Jim Kent with advice from Webb Miller and David Haussler. The browser display and database storage of the chains and nets were created by Robert Baertsch and Jim Kent. The chainNet, netSyntenic, and netClass programs were developed at the University of California Santa Cruz by Jim Kent. References Harris, R.S. (2007) Improved pairwise alignment of genomic DNA Ph.D. Thesis, The Pennsylvania State University Chiaromonte F, Yap VB, Miller W. Scoring pairwise genomic sequence alignments. Pac Symp Biocomput. 2002:115-26. PMID: 11928468 Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D. Evolution's cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11484-9. PMID: 14500911; PMC: PMC208784 Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, Haussler D, Miller W. Human-mouse alignments with BLASTZ. Genome Res. 2003 Jan;13(1):103-7. PMID: 12529312; PMC: PMC430961 chainNetPanTro4 Chimp Chain/Net Chimp (Feb. 2011 (CSAC 2.1.4/panTro4)), Chain and Net Alignments Comparative Genomics Description This track shows regions of the genome that are alignable to other genomes ("chain" subtracks) or in synteny ("net" subtracks). The alignable parts are shown with thick blocks that look like exons. Non-alignable parts between these are shown like introns. Chain Track The chain track shows alignments of chimp (Feb. 2011 (CSAC 2.1.4/panTro4)) to the rat genome using a gap scoring system that allows longer gaps than traditional affine gap scoring systems. It can also tolerate gaps in both chimp and rat simultaneously. These "double-sided" gaps can be caused by local inversions and overlapping deletions in both species. The chain track displays boxes joined together by either single or double lines. The boxes represent aligning regions. Single lines indicate gaps that are largely due to a deletion in the chimp assembly or an insertion in the rat assembly. Double lines represent more complex gaps that involve substantial sequence in both species. This may result from inversions, overlapping deletions, an abundance of local mutation, or an unsequenced gap in one species. In cases where multiple chains align over a particular region of the rat genome, the chains with single-lined gaps are often due to processed pseudogenes, while chains with double-lined gaps are more often due to paralogs and unprocessed pseudogenes. In the "pack" and "full" display modes, the individual feature names indicate the chromosome, strand, and location (in thousands) of the match for each matching alignment. Net Track The net track shows the best chimp/rat chain for every part of the rat genome. It is useful for finding syntenic regions, possibly orthologs, and for studying genome rearrangement. The chimp sequence used in this annotation is from the Feb. 2011 (CSAC 2.1.4/panTro4) assembly. Display Conventions and Configuration Chain Track By default, the chains to chromosome-based assemblies are colored based on which chromosome they map to in the aligning organism. To turn off the coloring, check the "off" button next to: Color track based on chromosome. To display only the chains of one chromosome in the aligning organism, enter the name of that chromosome (e.g. chr4) in box next to: Filter by chromosome. Net Track In full display mode, the top-level (level 1) chains are the largest, highest-scoring chains that span this region. In many cases gaps exist in the top-level chain. When possible, these are filled in by other chains that are displayed at level 2. The gaps in level 2 chains may be filled by level 3 chains and so forth. In the graphical display, the boxes represent ungapped alignments; the lines represent gaps. Click on a box to view detailed information about the chain as a whole; click on a line to display information about the gap. The detailed information is useful in determining the cause of the gap or, for lower level chains, the genomic rearrangement. Individual items in the display are categorized as one of four types (other than gap): Top - the best, longest match. Displayed on level 1. Syn - line-ups on the same chromosome as the gap in the level above it. Inv - a line-up on the same chromosome as the gap above it, but in the opposite orientation. NonSyn - a match to a chromosome different from the gap in the level above. Methods Chain track Transposons that have been inserted since the chimp/rat split were removed from the assemblies. The abbreviated genomes were aligned with lastz, and the transposons were added back in. The resulting alignments were converted into axt format using the lavToAxt program. The axt alignments were fed into axtChain, which organizes all alignments between a single chimp chromosome and a single rat chromosome into a group and creates a kd-tree out of the gapless subsections (blocks) of the alignments. A dynamic program was then run over the kd-trees to find the maximally scoring chains of these blocks. The following matrix was used:  ACGT A91-114-31-123 C-114100-125-31 G-31-125100-114 T-123-31-11491 Chains scoring below a minimum score of "3000" were discarded; the remaining chains are displayed in this track. The linear gap matrix used with axtChain: -linearGap=medium tableSize 11 smallSize 111 position 1 2 3 11 111 2111 12111 32111 72111 152111 252111 qGap 350 425 450 600 900 2900 22900 57900 117900 217900 317900 tGap 350 425 450 600 900 2900 22900 57900 117900 217900 317900 bothGap 750 825 850 1000 1300 3300 23300 58300 118300 218300 318300 Net track Chains were derived from lastz alignments, using the methods described on the chain tracks description pages, and sorted with the highest-scoring chains in the genome ranked first. The program chainNet was then used to place the chains one at a time, trimming them as necessary to fit into sections not already covered by a higher-scoring chain. During this process, a natural hierarchy emerged in which a chain that filled a gap in a higher-scoring chain was placed underneath that chain. The program netSyntenic was used to fill in information about the relationship between higher- and lower-level chains, such as whether a lower-level chain was syntenic or inverted relative to the higher-level chain. The program netClass was then used to fill in how much of the gaps and chains contained Ns (sequencing gaps) in one or both species and how much was filled with transposons inserted before and after the two organisms diverged. Credits Lastz (previously known as blastz) was developed at Pennsylvania State University by Minmei Hou, Scott Schwartz, Zheng Zhang, and Webb Miller with advice from Ross Hardison. Lineage-specific repeats were identified by Arian Smit and his RepeatMasker program. The axtChain program was developed at the University of California at Santa Cruz by Jim Kent with advice from Webb Miller and David Haussler. The browser display and database storage of the chains and nets were created by Robert Baertsch and Jim Kent. The chainNet, netSyntenic, and netClass programs were developed at the University of California Santa Cruz by Jim Kent. References Harris, R.S. (2007) Improved pairwise alignment of genomic DNA Ph.D. Thesis, The Pennsylvania State University Chiaromonte F, Yap VB, Miller W. Scoring pairwise genomic sequence alignments. Pac Symp Biocomput. 2002:115-26. PMID: 11928468 Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D. Evolution's cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11484-9. PMID: 14500911; PMC: PMC208784 Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, Haussler D, Miller W. Human-mouse alignments with BLASTZ. Genome Res. 2003 Jan;13(1):103-7. PMID: 12529312; PMC: PMC430961 chainNetPanTro4Viewnet Net Chimp (Feb. 2011 (CSAC 2.1.4/panTro4)), Chain and Net Alignments Comparative Genomics netPanTro4 Chimp Net Chimp (Feb. 2011 (CSAC 2.1.4/panTro4)) Alignment net Comparative Genomics Description This track shows regions of the genome that are alignable to other genomes ("chain" subtracks) or in synteny ("net" subtracks). The alignable parts are shown with thick blocks that look like exons. Non-alignable parts between these are shown like introns. Chain Track The chain track shows alignments of chimp (Feb. 2011 (CSAC 2.1.4/panTro4)) to the rat genome using a gap scoring system that allows longer gaps than traditional affine gap scoring systems. It can also tolerate gaps in both chimp and rat simultaneously. These "double-sided" gaps can be caused by local inversions and overlapping deletions in both species. The chain track displays boxes joined together by either single or double lines. The boxes represent aligning regions. Single lines indicate gaps that are largely due to a deletion in the chimp assembly or an insertion in the rat assembly. Double lines represent more complex gaps that involve substantial sequence in both species. This may result from inversions, overlapping deletions, an abundance of local mutation, or an unsequenced gap in one species. In cases where multiple chains align over a particular region of the rat genome, the chains with single-lined gaps are often due to processed pseudogenes, while chains with double-lined gaps are more often due to paralogs and unprocessed pseudogenes. In the "pack" and "full" display modes, the individual feature names indicate the chromosome, strand, and location (in thousands) of the match for each matching alignment. Net Track The net track shows the best chimp/rat chain for every part of the rat genome. It is useful for finding syntenic regions, possibly orthologs, and for studying genome rearrangement. The chimp sequence used in this annotation is from the Feb. 2011 (CSAC 2.1.4/panTro4) assembly. Display Conventions and Configuration Chain Track By default, the chains to chromosome-based assemblies are colored based on which chromosome they map to in the aligning organism. To turn off the coloring, check the "off" button next to: Color track based on chromosome. To display only the chains of one chromosome in the aligning organism, enter the name of that chromosome (e.g. chr4) in box next to: Filter by chromosome. Net Track In full display mode, the top-level (level 1) chains are the largest, highest-scoring chains that span this region. In many cases gaps exist in the top-level chain. When possible, these are filled in by other chains that are displayed at level 2. The gaps in level 2 chains may be filled by level 3 chains and so forth. In the graphical display, the boxes represent ungapped alignments; the lines represent gaps. Click on a box to view detailed information about the chain as a whole; click on a line to display information about the gap. The detailed information is useful in determining the cause of the gap or, for lower level chains, the genomic rearrangement. Individual items in the display are categorized as one of four types (other than gap): Top - the best, longest match. Displayed on level 1. Syn - line-ups on the same chromosome as the gap in the level above it. Inv - a line-up on the same chromosome as the gap above it, but in the opposite orientation. NonSyn - a match to a chromosome different from the gap in the level above. Methods Chain track Transposons that have been inserted since the chimp/rat split were removed from the assemblies. The abbreviated genomes were aligned with lastz, and the transposons were added back in. The resulting alignments were converted into axt format using the lavToAxt program. The axt alignments were fed into axtChain, which organizes all alignments between a single chimp chromosome and a single rat chromosome into a group and creates a kd-tree out of the gapless subsections (blocks) of the alignments. A dynamic program was then run over the kd-trees to find the maximally scoring chains of these blocks. The following matrix was used:  ACGT A91-114-31-123 C-114100-125-31 G-31-125100-114 T-123-31-11491 Chains scoring below a minimum score of "3000" were discarded; the remaining chains are displayed in this track. The linear gap matrix used with axtChain: -linearGap=medium tableSize 11 smallSize 111 position 1 2 3 11 111 2111 12111 32111 72111 152111 252111 qGap 350 425 450 600 900 2900 22900 57900 117900 217900 317900 tGap 350 425 450 600 900 2900 22900 57900 117900 217900 317900 bothGap 750 825 850 1000 1300 3300 23300 58300 118300 218300 318300 Net track Chains were derived from lastz alignments, using the methods described on the chain tracks description pages, and sorted with the highest-scoring chains in the genome ranked first. The program chainNet was then used to place the chains one at a time, trimming them as necessary to fit into sections not already covered by a higher-scoring chain. During this process, a natural hierarchy emerged in which a chain that filled a gap in a higher-scoring chain was placed underneath that chain. The program netSyntenic was used to fill in information about the relationship between higher- and lower-level chains, such as whether a lower-level chain was syntenic or inverted relative to the higher-level chain. The program netClass was then used to fill in how much of the gaps and chains contained Ns (sequencing gaps) in one or both species and how much was filled with transposons inserted before and after the two organisms diverged. Credits Lastz (previously known as blastz) was developed at Pennsylvania State University by Minmei Hou, Scott Schwartz, Zheng Zhang, and Webb Miller with advice from Ross Hardison. Lineage-specific repeats were identified by Arian Smit and his RepeatMasker program. The axtChain program was developed at the University of California at Santa Cruz by Jim Kent with advice from Webb Miller and David Haussler. The browser display and database storage of the chains and nets were created by Robert Baertsch and Jim Kent. The chainNet, netSyntenic, and netClass programs were developed at the University of California Santa Cruz by Jim Kent. References Harris, R.S. (2007) Improved pairwise alignment of genomic DNA Ph.D. Thesis, The Pennsylvania State University Chiaromonte F, Yap VB, Miller W. Scoring pairwise genomic sequence alignments. Pac Symp Biocomput. 2002:115-26. PMID: 11928468 Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D. Evolution's cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11484-9. PMID: 14500911; PMC: PMC208784 Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, Haussler D, Miller W. Human-mouse alignments with BLASTZ. Genome Res. 2003 Jan;13(1):103-7. PMID: 12529312; PMC: PMC430961 chainNetPanTro4Viewchain Chain Chimp (Feb. 2011 (CSAC 2.1.4/panTro4)), Chain and Net Alignments Comparative Genomics chainPanTro4 Chimp Chain Chimp (Feb. 2011 (CSAC 2.1.4/panTro4)) Chained Alignments Comparative Genomics Description This track shows regions of the genome that are alignable to other genomes ("chain" subtracks) or in synteny ("net" subtracks). The alignable parts are shown with thick blocks that look like exons. Non-alignable parts between these are shown like introns. Chain Track The chain track shows alignments of chimp (Feb. 2011 (CSAC 2.1.4/panTro4)) to the rat genome using a gap scoring system that allows longer gaps than traditional affine gap scoring systems. It can also tolerate gaps in both chimp and rat simultaneously. These "double-sided" gaps can be caused by local inversions and overlapping deletions in both species. The chain track displays boxes joined together by either single or double lines. The boxes represent aligning regions. Single lines indicate gaps that are largely due to a deletion in the chimp assembly or an insertion in the rat assembly. Double lines represent more complex gaps that involve substantial sequence in both species. This may result from inversions, overlapping deletions, an abundance of local mutation, or an unsequenced gap in one species. In cases where multiple chains align over a particular region of the rat genome, the chains with single-lined gaps are often due to processed pseudogenes, while chains with double-lined gaps are more often due to paralogs and unprocessed pseudogenes. In the "pack" and "full" display modes, the individual feature names indicate the chromosome, strand, and location (in thousands) of the match for each matching alignment. Net Track The net track shows the best chimp/rat chain for every part of the rat genome. It is useful for finding syntenic regions, possibly orthologs, and for studying genome rearrangement. The chimp sequence used in this annotation is from the Feb. 2011 (CSAC 2.1.4/panTro4) assembly. Display Conventions and Configuration Chain Track By default, the chains to chromosome-based assemblies are colored based on which chromosome they map to in the aligning organism. To turn off the coloring, check the "off" button next to: Color track based on chromosome. To display only the chains of one chromosome in the aligning organism, enter the name of that chromosome (e.g. chr4) in box next to: Filter by chromosome. Net Track In full display mode, the top-level (level 1) chains are the largest, highest-scoring chains that span this region. In many cases gaps exist in the top-level chain. When possible, these are filled in by other chains that are displayed at level 2. The gaps in level 2 chains may be filled by level 3 chains and so forth. In the graphical display, the boxes represent ungapped alignments; the lines represent gaps. Click on a box to view detailed information about the chain as a whole; click on a line to display information about the gap. The detailed information is useful in determining the cause of the gap or, for lower level chains, the genomic rearrangement. Individual items in the display are categorized as one of four types (other than gap): Top - the best, longest match. Displayed on level 1. Syn - line-ups on the same chromosome as the gap in the level above it. Inv - a line-up on the same chromosome as the gap above it, but in the opposite orientation. NonSyn - a match to a chromosome different from the gap in the level above. Methods Chain track Transposons that have been inserted since the chimp/rat split were removed from the assemblies. The abbreviated genomes were aligned with lastz, and the transposons were added back in. The resulting alignments were converted into axt format using the lavToAxt program. The axt alignments were fed into axtChain, which organizes all alignments between a single chimp chromosome and a single rat chromosome into a group and creates a kd-tree out of the gapless subsections (blocks) of the alignments. A dynamic program was then run over the kd-trees to find the maximally scoring chains of these blocks. The following matrix was used:  ACGT A91-114-31-123 C-114100-125-31 G-31-125100-114 T-123-31-11491 Chains scoring below a minimum score of "3000" were discarded; the remaining chains are displayed in this track. The linear gap matrix used with axtChain: -linearGap=medium tableSize 11 smallSize 111 position 1 2 3 11 111 2111 12111 32111 72111 152111 252111 qGap 350 425 450 600 900 2900 22900 57900 117900 217900 317900 tGap 350 425 450 600 900 2900 22900 57900 117900 217900 317900 bothGap 750 825 850 1000 1300 3300 23300 58300 118300 218300 318300 Net track Chains were derived from lastz alignments, using the methods described on the chain tracks description pages, and sorted with the highest-scoring chains in the genome ranked first. The program chainNet was then used to place the chains one at a time, trimming them as necessary to fit into sections not already covered by a higher-scoring chain. During this process, a natural hierarchy emerged in which a chain that filled a gap in a higher-scoring chain was placed underneath that chain. The program netSyntenic was used to fill in information about the relationship between higher- and lower-level chains, such as whether a lower-level chain was syntenic or inverted relative to the higher-level chain. The program netClass was then used to fill in how much of the gaps and chains contained Ns (sequencing gaps) in one or both species and how much was filled with transposons inserted before and after the two organisms diverged. Credits Lastz (previously known as blastz) was developed at Pennsylvania State University by Minmei Hou, Scott Schwartz, Zheng Zhang, and Webb Miller with advice from Ross Hardison. Lineage-specific repeats were identified by Arian Smit and his RepeatMasker program. The axtChain program was developed at the University of California at Santa Cruz by Jim Kent with advice from Webb Miller and David Haussler. The browser display and database storage of the chains and nets were created by Robert Baertsch and Jim Kent. The chainNet, netSyntenic, and netClass programs were developed at the University of California Santa Cruz by Jim Kent. References Harris, R.S. (2007) Improved pairwise alignment of genomic DNA Ph.D. Thesis, The Pennsylvania State University Chiaromonte F, Yap VB, Miller W. Scoring pairwise genomic sequence alignments. Pac Symp Biocomput. 2002:115-26. PMID: 11928468 Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D. Evolution's cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11484-9. PMID: 14500911; PMC: PMC208784 Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, Haussler D, Miller W. Human-mouse alignments with BLASTZ. Genome Res. 2003 Jan;13(1):103-7. PMID: 12529312; PMC: PMC430961