augustusGene AUGUSTUS AUGUSTUS ab initio gene predictions v3.1 Genes and Gene Predictions Description This track shows ab initio predictions from the program AUGUSTUS (version 3.1). The predictions are based on the genome sequence alone. For more information on the different gene tracks, see our Genes FAQ. Methods Statistical signal models were built for splice sites, branch-point patterns, translation start sites, and the poly-A signal. Furthermore, models were built for the sequence content of protein-coding and non-coding regions as well as for the length distributions of different exon and intron types. Detailed descriptions of most of these different models can be found in Mario Stanke's dissertation. This track shows the most likely gene structure according to a Semi-Markov Conditional Random Field model. Alternative splicing transcripts were obtained with a sampling algorithm (--alternatives-from-sampling=true --sample=100 --minexonintronprob=0.2 --minmeanexonintronprob=0.5 --maxtracks=3 --temperature=2). The different models used by Augustus were trained on a number of different species-specific gene sets, which included 1000-2000 training gene structures. The --species option allows one to choose the species used for training the models. Different training species were used for the --species option when generating these predictions for different groups of assemblies. Assembly Group Training Species Fish zebrafish Birds chicken Human and all other vertebrates human Nematodes caenorhabditis Drosophila fly A. mellifera honeybee1 A. gambiae culex S. cerevisiae saccharomyces This table describes which training species was used for a particular group of assemblies. When available, the closest related training species was used. Credits Thanks to the Stanke lab for providing the AUGUSTUS program. The training for the chicken version was done by Stefanie König and the training for the human and zebrafish versions was done by Mario Stanke. References Stanke M, Diekhans M, Baertsch R, Haussler D. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics. 2008 Mar 1;24(5):637-44. PMID: 18218656 Stanke M, Waack S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics. 2003 Oct;19 Suppl 2:ii215-25. PMID: 14534192 gap Gap Gap Locations Mapping and Sequencing Description This track depicts gaps in the assembly of chrUn, the "unordered chromosome" for this browser. Gaps are represented as black boxes. This assembly contains two types of gaps: contig - gaps between scaffolds. These gaps, represented by 1000 Ns, are placeholders between scaffolds that were added as part of the construction of chrUn. Because the order and orientation between the scaffolds is unknown, contig gaps are considered to be unbridged. There are 3,031 gaps of this type, for a total of 3,031,000 bases. fragment - these gaps are merely locations of N's that are not in the contig gaps. They are marked as bridged gaps, although there are 30 unusual cases were a scaffold sequence happens to begin or end with a single N and thus appears adjacent to the contig gaps. There are 91,784 gaps of this type, for a total of 92,153,565 bases. gc5Base GC Percent GC Percent in 5-Base Windows Mapping and Sequencing Description The GC percent track shows the percentage of G (guanine) and C (cytosine) bases in 5-base windows. High GC content is typically associated with gene-rich areas. This track may be configured in a variety of ways to highlight different apsects of the displayed information. Click the "Graph configuration help" link for an explanation of the configuration options. Credits The data and presentation of this graph were prepared by Hiram Clawson. blastHg18KG Human Proteins Human Proteins Mapped by Chained tBLASTn Genes and Gene Predictions Description This track contains tBLASTn alignments of the peptides from the predicted and known genes identified in the hg18 UCSC Genes track. Methods First, the predicted proteins from the human UCSC Genes track were aligned with the human genome using the Blat program to discover exon boundaries. Next, the amino acid sequences that make up each exon were aligned with the lancelet sequence using the tBLASTn program. Finally, the putative lancelet exons were chained together using an organism-specific maximum gap size but no gap penalty. The single best exon chains extending over more than 60% of the query protein were included. Exon chains that extended over 60% of the query and matched at least 60% of the protein's amino acids were also included. Credits tBLASTn is part of the NCBI BLAST tool set. For more information on BLAST, see Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403-410. Blat was written by Jim Kent. The remaining utilities used to produce this track were written by Jim Kent or Brian Raney. est Lancelet ESTs Lancelet ESTs Including Unspliced mRNA and EST Description This track shows alignments between lancelet expressed sequence tags (ESTs) in GenBank and the genome. ESTs are single-read sequences, typically about 500 bases in length, that usually represent fragments of transcribed genes. Display Conventions and Configuration This track follows the display conventions for PSL alignment tracks. In dense display mode, the items that are more darkly shaded indicate matches of better quality. The strand information (+/-) indicates the direction of the match between the EST and the matching genomic sequence. It bears no relationship to the direction of transcription of the RNA with which it might be associated. The description page for this track has a filter that can be used to change the display mode, alter the color, and include/exclude a subset of items within the track. This may be helpful when many items are shown in the track display, especially when only some are relevant to the current task. To use the filter: Type a term in one or more of the text boxes to filter the EST display. For example, to apply the filter to all ESTs expressed in a specific organ, type the name of the organ in the tissue box. To view the list of valid terms for each text box, consult the table in the Table Browser that corresponds to the factor on which you wish to filter. For example, the "tissue" table contains all the types of tissues that can be entered into the tissue text box. Multiple terms may be entered at once, separated by a space. Wildcards may also be used in the filter. If filtering on more than one value, choose the desired combination logic. If "and" is selected, only ESTs that match all filter criteria will be highlighted. If "or" is selected, ESTs that match any one of the filter criteria will be highlighted. Choose the color or display characteristic that should be used to highlight or include/exclude the filtered items. If "exclude" is chosen, the browser will not display ESTs that match the filter criteria. If "include" is selected, the browser will display only those ESTs that match the filter criteria. This track may also be configured to display base labeling, a feature that allows the user to display all bases in the aligning sequence or only those that differ from the genomic sequence. For more information about this option, go to the Base Coloring for Alignment Tracks page. Several types of alignment gap may also be colored; for more information, go to the Alignment Insertion/Deletion Display Options page. Methods To make an EST, RNA is isolated from cells and reverse transcribed into cDNA. Typically, the cDNA is cloned into a plasmid vector and a read is taken from the 5' and/or 3' primer. For most — but not all — ESTs, the reverse transcription is primed by an oligo-dT, which hybridizes with the poly-A tail of mature mRNA. The reverse transcriptase may or may not make it to the 5' end of the mRNA, which may or may not be degraded. In general, the 3' ESTs mark the end of transcription reasonably well, but the 5' ESTs may end at any point within the transcript. Some of the newer cap-selected libraries cover transcription start reasonably well. Before the cap-selection techniques emerged, some projects used random rather than poly-A priming in an attempt to retrieve sequence distant from the 3' end. These projects were successful at this, but as a side effect also deposited sequences from unprocessed mRNA and perhaps even genomic sequences into the EST databases. Even outside of the random-primed projects, there is a degree of non-mRNA contamination. Because of this, a single unspliced EST should be viewed with considerable skepticism. To generate this track, lancelet ESTs from GenBank were aligned against the genome using blat. Note that the maximum intron length allowed by blat is 750,000 bases, which may eliminate some ESTs with very long introns that might otherwise align. When a single EST aligned in multiple places, the alignment having the highest base identity was identified. Only alignments having a base identity level within 0.5% of the best and at least 96% base identity with the genomic sequence were kept. Credits This track was produced at UCSC from EST sequence data submitted to the international public sequence databases by scientists worldwide. References Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res. 2013 Jan;41(Database issue):D36-42. PMID: 23193287; PMC: PMC3531190 Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL. GenBank: update. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D23-6. PMID: 14681350; PMC: PMC308779 Kent WJ. BLAT - the BLAST-like alignment tool. Genome Res. 2002 Apr;12(4):656-64. PMID: 11932250; PMC: PMC187518 mrna Lancelet mRNAs Lancelet mRNAs from GenBank mRNA and EST Description The mRNA track shows alignments between lancelet mRNAs in GenBank and the genome. Display Conventions and Configuration This track follows the display conventions for PSL alignment tracks. In dense display mode, the items that are more darkly shaded indicate matches of better quality. The description page for this track has a filter that can be used to change the display mode, alter the color, and include/exclude a subset of items within the track. This may be helpful when many items are shown in the track display, especially when only some are relevant to the current task. To use the filter: Type a term in one or more of the text boxes to filter the mRNA display. For example, to apply the filter to all mRNAs expressed in a specific organ, type the name of the organ in the tissue box. To view the list of valid terms for each text box, consult the table in the Table Browser that corresponds to the factor on which you wish to filter. For example, the "tissue" table contains all the types of tissues that can be entered into the tissue text box. Multiple terms may be entered at once, separated by a space. Wildcards may also be used in the filter. If filtering on more than one value, choose the desired combination logic. If "and" is selected, only mRNAs that match all filter criteria will be highlighted. If "or" is selected, mRNAs that match any one of the filter criteria will be highlighted. Choose the color or display characteristic that should be used to highlight or include/exclude the filtered items. If "exclude" is chosen, the browser will not display mRNAs that match the filter criteria. If "include" is selected, the browser will display only those mRNAs that match the filter criteria. This track may also be configured to display codon coloring, a feature that allows the user to quickly compare mRNAs against the genomic sequence. For more information about this option, go to the Codon and Base Coloring for Alignment Tracks page. Several types of alignment gap may also be colored; for more information, go to the Alignment Insertion/Deletion Display Options page. Methods GenBank lancelet mRNAs were aligned against the genome using the blat program. When a single mRNA aligned in multiple places, the alignment having the highest base identity was found. Only alignments having a base identity level within 0.5% of the best and at least 96% base identity with the genomic sequence were kept. Credits The mRNA track was produced at UCSC from mRNA sequence data submitted to the international public sequence databases by scientists worldwide. References Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res. 2013 Jan;41(Database issue):D36-42. PMID: 23193287; PMC: PMC3531190 Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL. GenBank: update. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D23-6. PMID: 14681350; PMC: PMC308779 Kent WJ. BLAT - the BLAST-like alignment tool. Genome Res. 2002 Apr;12(4):656-64. PMID: 11932250; PMC: PMC187518 xenoMrna Other mRNAs Non-Lancelet mRNAs from GenBank mRNA and EST Description This track displays translated blat alignments of vertebrate and invertebrate mRNA in GenBank from organisms other than lancelet. Display Conventions and Configuration This track follows the display conventions for PSL alignment tracks. In dense display mode, the items that are more darkly shaded indicate matches of better quality. The strand information (+/-) for this track is in two parts. The first + indicates the orientation of the query sequence whose translated protein produced the match (here always 5' to 3', hence +). The second + or - indicates the orientation of the matching translated genomic sequence. Because the two orientations of a DNA sequence give different predicted protein sequences, there are four combinations. ++ is not the same as --, nor is +- the same as -+. The description page for this track has a filter that can be used to change the display mode, alter the color, and include/exclude a subset of items within the track. This may be helpful when many items are shown in the track display, especially when only some are relevant to the current task. To use the filter: Type a term in one or more of the text boxes to filter the mRNA display. For example, to apply the filter to all mRNAs expressed in a specific organ, type the name of the organ in the tissue box. To view the list of valid terms for each text box, consult the table in the Table Browser that corresponds to the factor on which you wish to filter. For example, the "tissue" table contains all the types of tissues that can be entered into the tissue text box. Multiple terms may be entered at once, separated by a space. Wildcards may also be used in the filter. If filtering on more than one value, choose the desired combination logic. If "and" is selected, only mRNAs that match all filter criteria will be highlighted. If "or" is selected, mRNAs that match any one of the filter criteria will be highlighted. Choose the color or display characteristic that should be used to highlight or include/exclude the filtered items. If "exclude" is chosen, the browser will not display mRNAs that match the filter criteria. If "include" is selected, the browser will display only those mRNAs that match the filter criteria. This track may also be configured to display codon coloring, a feature that allows the user to quickly compare mRNAs against the genomic sequence. For more information about this option, go to the Codon and Base Coloring for Alignment Tracks page. Several types of alignment gap may also be colored; for more information, go to the Alignment Insertion/Deletion Display Options page. Methods The mRNAs were aligned against the lancelet genome using translated blat. When a single mRNA aligned in multiple places, the alignment having the highest base identity was found. Only those alignments having a base identity level within 1% of the best and at least 25% base identity with the genomic sequence were kept. Credits The mRNA track was produced at UCSC from mRNA sequence data submitted to the international public sequence databases by scientists worldwide. References Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res. 2013 Jan;41(Database issue):D36-42. PMID: 23193287; PMC: PMC3531190 Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL. GenBank: update. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D23-6. PMID: 14681350; PMC: PMC308779 Kent WJ. BLAT - the BLAST-like alignment tool. Genome Res. 2002 Apr;12(4):656-64. PMID: 11932250; PMC: PMC187518 xenoRefGene Other RefSeq Non-Lancelet RefSeq Genes Genes and Gene Predictions Description This track shows known protein-coding and non-protein-coding genes for organisms other than lancelet, taken from the NCBI RNA reference sequences collection (RefSeq). The data underlying this track are updated weekly. Display Conventions and Configuration This track follows the display conventions for gene prediction tracks. The color shading indicates the level of review the RefSeq record has undergone: predicted (light), provisional (medium), reviewed (dark). The item labels and display colors of features within this track can be configured through the controls at the top of the track description page. Label: By default, items are labeled by gene name. Click the appropriate Label option to display the accession name instead of the gene name, show both the gene and accession names, or turn off the label completely. Codon coloring: This track contains an optional codon coloring feature that allows users to quickly validate and compare gene predictions. To display codon colors, select the genomic codons option from the Color track by codons pull-down menu. For more information about this feature, go to the Coloring Gene Predictions and Annotations by Codon page. Hide non-coding genes: By default, both the protein-coding and non-protein-coding genes are displayed. If you wish to see only the coding genes, click this box. Methods The RNAs were aligned against the lancelet genome using blat; those with an alignment of less than 15% were discarded. When a single RNA aligned in multiple places, the alignment having the highest base identity was identified. Only alignments having a base identity level within 0.5% of the best and at least 25% base identity with the genomic sequence were kept. Credits This track was produced at UCSC from RNA sequence data generated by scientists worldwide and curated by the NCBI RefSeq project. References Kent WJ. BLAT--the BLAST-like alignment tool. Genome Res. 2002 Apr;12(4):656-64. PMID: 11932250; PMC: PMC187518 Pruitt KD, Brown GR, Hiatt SM, Thibaud-Nissen F, Astashyn A, Ermolaeva O, Farrell CM, Hart J, Landrum MJ, McGarvey KM et al. RefSeq: an update on mammalian reference sequences. Nucleic Acids Res. 2014 Jan;42(Database issue):D756-63. PMID: 24259432; PMC: PMC3965018 Pruitt KD, Tatusova T, Maglott DR. NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 2005 Jan 1;33(Database issue):D501-4. PMID: 15608248; PMC: PMC539979 gold Scaffolds Scaffolds on artifical chromosome chrUn Mapping and Sequencing Description This track shows the Lancelet v.1.0 (Mar. 2006) whole genome shotgun assembly provided by the US DOE Joint Genome Institute (JGI). The assembly was constructed with the JGI assembler, JAZZ. The sequence coverage is 8.1X. A high allelic polymorphism rate of 5-10% allowed the two haplotypes to be assembled separately at approximately 75% of genomic loci. There are a total of 3,032 scaffolds, with a total length of 923 Mb composed of 81,073 contigs. Half of the assembly is contained in 174 scaffolds, all at least 1.6 Mb in length. The length-weighted mean contig size (L50) is 26 kb. The scaffolds in the display are ordered numerically using the scaffold numbering provided by JGI. The Genome Browser depicts the Lancelet genome as a single unordered chromosome with 1000 bp scaffold gaps, which are shown in the Gap track annotation. The scaffolds decrease in size as the scaffold number increases; scaffold #1 is the largest. All components in chrUn are of fragment type "D": draft sequence. The chrM sequence is finished sequence, fragment type "F", from Genbank accession number NC_000834.1 GI:5881414 simpleRepeat Simple Repeats Simple Tandem Repeats by TRF Variation and Repeats Description This track displays simple tandem repeats (possibly imperfect repeats) located by Tandem Repeats Finder (TRF) which is specialized for this purpose. These repeats can occur within coding regions of genes and may be quite polymorphic. Repeat expansions are sometimes associated with specific diseases. Methods For more information about the TRF program, see Benson (1999). Credits TRF was written by Gary Benson. References Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999 Jan 15;27(2):573-80. PMID: 9862982; PMC: PMC148217 intronEst Spliced ESTs Lancelet ESTs That Have Been Spliced mRNA and EST Description This track shows alignments between lancelet expressed sequence tags (ESTs) in GenBank and the genome that show signs of splicing when aligned against the genome. ESTs are single-read sequences, typically about 500 bases in length, that usually represent fragments of transcribed genes. To be considered spliced, an EST must show evidence of at least one canonical intron (i.e., the genomic sequence between EST alignment blocks must be at least 32 bases in length and have GT/AG ends). By requiring splicing, the level of contamination in the EST databases is drastically reduced at the expense of eliminating many genuine 3' ESTs. For a display of all ESTs (including unspliced), see the lancelet EST track. Display Conventions and Configuration This track follows the display conventions for PSL alignment tracks. In dense display mode, darker shading indicates a larger number of aligned ESTs. The strand information (+/-) indicates the direction of the match between the EST and the matching genomic sequence. It bears no relationship to the direction of transcription of the RNA with which it might be associated. The description page for this track has a filter that can be used to change the display mode, alter the color, and include/exclude a subset of items within the track. This may be helpful when many items are shown in the track display, especially when only some are relevant to the current task. To use the filter: Type a term in one or more of the text boxes to filter the EST display. For example, to apply the filter to all ESTs expressed in a specific organ, type the name of the organ in the tissue box. To view the list of valid terms for each text box, consult the table in the Table Browser that corresponds to the factor on which you wish to filter. For example, the "tissue" table contains all the types of tissues that can be entered into the tissue text box. Multiple terms may be entered at once, separated by a space. Wildcards may also be used in the filter. If filtering on more than one value, choose the desired combination logic. If "and" is selected, only ESTs that match all filter criteria will be highlighted. If "or" is selected, ESTs that match any one of the filter criteria will be highlighted. Choose the color or display characteristic that should be used to highlight or include/exclude the filtered items. If "exclude" is chosen, the browser will not display ESTs that match the filter criteria. If "include" is selected, the browser will display only those ESTs that match the filter criteria. This track may also be configured to display base labeling, a feature that allows the user to display all bases in the aligning sequence or only those that differ from the genomic sequence. For more information about this option, go to the Base Coloring for Alignment Tracks page. Several types of alignment gap may also be colored; for more information, go to the Alignment Insertion/Deletion Display Options page. Methods To make an EST, RNA is isolated from cells and reverse transcribed into cDNA. Typically, the cDNA is cloned into a plasmid vector and a read is taken from the 5' and/or 3' primer. For most — but not all — ESTs, the reverse transcription is primed by an oligo-dT, which hybridizes with the poly-A tail of mature mRNA. The reverse transcriptase may or may not make it to the 5' end of the mRNA, which may or may not be degraded. In general, the 3' ESTs mark the end of transcription reasonably well, but the 5' ESTs may end at any point within the transcript. Some of the newer cap-selected libraries cover transcription start reasonably well. Before the cap-selection techniques emerged, some projects used random rather than poly-A priming in an attempt to retrieve sequence distant from the 3' end. These projects were successful at this, but as a side effect also deposited sequences from unprocessed mRNA and perhaps even genomic sequences into the EST databases. Even outside of the random-primed projects, there is a degree of non-mRNA contamination. Because of this, a single unspliced EST should be viewed with considerable skepticism. To generate this track, lancelet ESTs from GenBank were aligned against the genome using blat. Note that the maximum intron length allowed by blat is 750,000 bases, which may eliminate some ESTs with very long introns that might otherwise align. When a single EST aligned in multiple places, the alignment having the highest base identity was identified. Only alignments having a base identity level within 0.5% of the best and at least 96% base identity with the genomic sequence are displayed in this track. Credits This track was produced at UCSC from EST sequence data submitted to the international public sequence databases by scientists worldwide. References Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res. 2013 Jan;41(Database issue):D36-42. PMID: 23193287; PMC: PMC3531190 Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL. GenBank: update. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D23-6. PMID: 14681350; PMC: PMC308779 Kent WJ. BLAT - the BLAST-like alignment tool. Genome Res. 2002 Apr;12(4):656-64. PMID: 11932250; PMC: PMC187518 uniprot UniProt UniProt SwissProt/TrEMBL Protein Annotations Genes and Gene Predictions Description This track shows protein sequences and annotations on them from the UniProt/SwissProt database, mapped to genomic coordinates. UniProt/SwissProt data has been curated from scientific publications by the UniProt staff, UniProt/TrEMBL data has been predicted by various computational algorithms. The annotations are divided into multiple subtracks, based on their "feature type" in UniProt. The first two subtracks below - one for SwissProt, one for TrEMBL - show the alignments of protein sequences to the genome, all other tracks below are the protein annotations mapped through these alignments to the genome. Track Name Description UCSC Alignment, SwissProt = curated protein sequences Protein sequences from SwissProt mapped to the genome. All other tracks are (start,end) SwissProt annotations on these sequences mapped through this alignment. Even protein sequences without a single curated annotation (splice isoforms) are visible in this track. Each UniProt protein has one main isoform, which is colored in dark. Alternative isoforms are sequences that do not have annotations on them and are colored in light-blue. They can be hidden with the TrEMBL/Isoform filter (see below). UCSC Alignment, TrEMBL = predicted protein sequences Protein sequences from TrEMBL mapped to the genome. All other tracks below are (start,end) TrEMBL annotations mapped to the genome using this track. This track is hidden by default. To show it, click its checkbox on the track configuration page. UniProt Signal Peptides Regions found in proteins destined to be secreted, generally cleaved from mature protein. UniProt Extracellular Domains Protein domains with the comment "Extracellular". UniProt Transmembrane Domains Protein domains of the type "Transmembrane". UniProt Cytoplasmic Domains Protein domains with the comment "Cytoplasmic". UniProt Polypeptide Chains Polypeptide chain in mature protein after post-processing. UniProt Regions of Interest Regions that have been experimentally defined, such as the role of a region in mediating protein-protein interactions or some other biological process. UniProt Domains Protein domains, zinc finger regions and topological domains. UniProt Disulfide Bonds Disulfide bonds. UniProt Amino Acid Modifications Glycosylation sites, modified residues and lipid moiety-binding regions. UniProt Amino Acid Mutations Mutagenesis sites and sequence variants. UniProt Protein Primary/Secondary Structure Annotations Beta strands, helices, coiled-coil regions and turns. UniProt Sequence Conflicts Differences between Genbank sequences and the UniProt sequence. UniProt Repeats Regions of repeated sequence motifs or repeated domains. UniProt Other Annotations All other annotations, e.g. compositional bias For consistency and convenience for users of mutation-related tracks, the subtrack "UniProt/SwissProt Variants" is a copy of the track "UniProt Variants" in the track group "Phenotype and Literature", or "Variation and Repeats", depending on the assembly. Display Conventions and Configuration Genomic locations of UniProt/SwissProt annotations are labeled with a short name for the type of annotation (e.g. "glyco", "disulf bond", "Signal peptide" etc.). A click on them shows the full annotation and provides a link to the UniProt/SwissProt record for more details. TrEMBL annotations are always shown in light blue, except in the Signal Peptides, Extracellular Domains, Transmembrane Domains, and Cytoplamsic domains subtracks. Mouse over a feature to see the full UniProt annotation comment. For variants, the mouse over will show the full name of the UniProt disease acronym. The subtracks for domains related to subcellular location are sorted from outside to inside of the cell: Signal peptide, extracellular, transmembrane, and cytoplasmic. In the "UniProt Modifications" track, lipoification sites are highlighted in dark blue, glycosylation sites in dark green, and phosphorylation in light green. Duplicate annotations are removed as far as possible: if a TrEMBL annotation has the same genome position and same feature type, comment, disease and mutated amino acids as a SwissProt annotation, it is not shown again. Two annotations mapped through different protein sequence alignments but with the same genome coordinates are only shown once. On the configuration page of this track, you can choose to hide any TrEMBL annotations. This filter will also hide the UniProt alternative isoform protein sequences because both types of information are less relevant to most users. Please contact us if you want more detailed filtering features. Note that for the human hg38 assembly and SwissProt annotations, there also is a public track hub prepared by UniProt itself, with genome annotations maintained by UniProt using their own mapping method based on those Gencode/Ensembl gene models that are annotated in UniProt for a given protein. For proteins that differ from the genome, UniProt's mapping method will, in most cases, map a protein and its annotations to an unexpected location (see below for details on UCSC's mapping method). Methods Briefly, UniProt protein sequences were aligned to the transcripts associated with the protein, the top-scoring alignments were retained, and the result was projected to the genome through a transcript-to-genome alignment. Depending on the genome, the transcript-genome alignments was either provided by the source database (NBCI RefSeq), created at UCSC (UCSC RefSeq) or derived from the transcripts (Ensembl/Augustus). The transcript set is NCBI RefSeq for hg38, UCSC RefSeq for hg19 (due to alt/fix haplotype misplacements in the NCBI RefSeq set on hg19). For other genomes, RefSeq, Ensembl and Augustus are tried, in this order. The resulting protein-genome alignments of this process are available in the file formats for liftOver or pslMap from our data archive (see "Data Access" section below). An important step of the mapping process protein -> transcript -> genome is filtering the alignment from protein to transcript. Due to differences between the UniProt proteins and the transcripts (proteins were made many years before the transcripts were made, and human genomes have variants), the transcript with the highest BLAST score when aligning the protein to all transcripts is not always the correct transcript for a protein sequence. Therefore, the protein sequence is aligned to only a very short list of one or sometimes more transcripts, selected by a three-step procedure: Use transcripts directly annotated by UniProt: for organisms that have a RefSeq transcript track, proteins are aligned to the RefSeq transcripts that are annotated by UniProt for this particular protein. Use transcripts for NCBI Gene ID annotated by UniProt: If no transcripts are annotated on the protein, or the annotated ones have been deprecated by NCBI, but a NCBI Gene ID is annotated, the RefSeq transcripts for this Gene ID are used. This can result in multiple matching transcripts for a protein. Use best matching transcript: If no NCBI Gene is annotated, then BLAST scores are used to pick the transcripts. There can be multiple transcripts for one protein, as their coding sequences can be identical. All transcripts within 1% of the highest observed BLAST score are used. For strategy 2 and 3, many of the transcripts found do not differ in coding sequence, so the resulting alignments on the genome will be identical. Therefore, any identical alignments are removed in a final filtering step. The details page of these alignments will contain a list of all transcripts that result in the same protein-genome alignment. On hg38, only a handful of edge cases (pseudogenes, very recently added proteins) remain in 2023 where strategy 3 has to be used. In other words, when an NCBI or UCSC RefSeq track is used for the mapping and to align a protein sequence to the correct transcript, we use a three stage process: If UniProt has annotated a given RefSeq transcript for a given protein sequence, the protein is aligned to this transcript. Any difference in the version suffix is tolerated in this comparison. If no transcript is annotated or the transcript cannot be found in the NCBI/UCSC RefSeq track, the UniProt-annotated NCBI Gene ID is resolved to a set of NCBI RefSeq transcript IDs via the most current version of NCBI genes tables. Only the top match of the resulting alignments and all others within 1% of its score are used for the mapping. If no transcript can be found after step (2), the protein is aligned to all transcripts, the top match, and all others within 1% of its score are used. This system was designed to resolve the problem of incorrect mappings of proteins, mostly on hg38, due to differences between the SwissProt sequences and the genome reference sequence, which has changed since the proteins were defined. The problem is most pronounced for gene families composed of either very repetitive or very similar proteins. To make sure that the alignments always go to the best chromosome location, all _alt and _fix reference patch sequences are ignored for the alignment, so the patches are entirely free of UniProt annotations. Please contact us if you have feedback on this process or example edge cases. We are not aware of a way to evaluate the results completely and in an automated manner. Proteins were aligned to transcripts with TBLASTN, converted to PSL, filtered with pslReps (93% query coverage, keep alignments within top 1% score), lifted to genome positions with pslMap and filtered again with pslReps. UniProt annotations were obtained from the UniProt XML file. The UniProt annotations were then mapped to the genome through the alignment described above using the pslMap program. This approach draws heavily on the LS-SNP pipeline by Mark Diekhans. Like all Genome Browser source code, the main script used to build this track can be found on Github. Older releases This track is automatically updated on an ongoing basis, every 2-3 months. The current version name is always shown on the track details page, it includes the release of UniProt, the version of the transcript set and a unique MD5 that is based on the protein sequences, the transcript sequences, the mapping file between both and the transcript-genome alignment. The exact transcript that was used for the alignment is shown when clicking a protein alignment in one of the two alignment tracks. For reproducibility of older analysis results and for manual inspection, previous versions of this track are available for browsing in the form of the UCSC UniProt Archive Track Hub (click this link to connect the hub now). The underlying data of all releases of this track (past and current) can be obtained from our downloads server, including the UniProt protein-to-genome alignment. Data Access The raw data of the current track can be explored interactively with the Table Browser, or the Data Integrator. For automated analysis, the genome annotation is stored in a bigBed file that can be downloaded from the download server. The exact filenames can be found in the track configuration file. Annotations can be converted to ASCII text by our tool bigBedToBed which can be compiled from the source code or downloaded as a precompiled binary for your system. Instructions for downloading source code and binaries can be found here. The tool can also be used to obtain only features within a given range, for example: bigBedToBed http://hgdownload.soe.ucsc.edu/gbdb/braFlo1/uniprot/unipStruct.bb -chrom=chr6 -start=0 -end=1000000 stdout Please refer to our mailing list archives for questions, or our Data Access FAQ for more information. Lifting from UniProt to genome coordinates in pipelines To facilitate mapping protein coordinates to the genome, we provide the alignment files in formats that are suitable for our command line tools. Our command line programs liftOver or pslMap can be used to map coordinates on protein sequences to genome coordinates. The filenames are unipToGenome.over.chain.gz (liftOver) and unipToGenomeLift.psl.gz (pslMap). Example commands: wget -q https://hgdownload.soe.ucsc.edu/goldenPath/archive/hg38/uniprot/2022_03/unipToGenome.over.chain.gz wget -q https://hgdownload.soe.ucsc.edu/admin/exe/linux.x86_64/liftOver chmod a+x liftOver echo 'Q99697 1 10 annotationOnProtein' > prot.bed liftOver prot.bed unipToGenome.over.chain.gz genome.bed cat genome.bed Credits This track was created by Maximilian Haeussler at UCSC, with a lot of input from Chris Lee, Mark Diekhans and Brian Raney, feedback from the UniProt staff, Alejo Mujica, Regeneron Pharmaceuticals and Pia Riestra, GeneDx. Thanks to UniProt for making all data available for download. References UniProt Consortium. Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucleic Acids Res. 2012 Jan;40(Database issue):D71-5. PMID: 22102590; PMC: PMC3245120 Yip YL, Scheib H, Diemand AV, Gattiker A, Famiglietti LM, Gasteiger E, Bairoch A. The Swiss-Prot variant page and the ModSNP database: a resource for sequence and structure information on human protein variants. Hum Mutat. 2004 May;23(5):464-70. PMID: 15108278 unipConflict Seq. Conflicts UniProt Sequence Conflicts Genes and Gene Predictions unipRepeat Repeats UniProt Repeats Genes and Gene Predictions unipStruct Structure UniProt Protein Primary/Secondary Structure Annotations Genes and Gene Predictions unipOther Other Annot. UniProt Other Annotations Genes and Gene Predictions unipMut Mutations UniProt Amino Acid Mutations Genes and Gene Predictions unipModif AA Modifications UniProt Amino Acid Modifications Genes and Gene Predictions unipDomain Domains UniProt Domains Genes and Gene Predictions unipDisulfBond Disulf. Bonds UniProt Disulfide Bonds Genes and Gene Predictions unipChain Chains UniProt Mature Protein Products (Polypeptide Chains) Genes and Gene Predictions unipLocCytopl Cytoplasmic UniProt Cytoplasmic Domains Genes and Gene Predictions unipLocTransMemb Transmembrane UniProt Transmembrane Domains Genes and Gene Predictions unipInterest Interest UniProt Regions of Interest Genes and Gene Predictions unipLocExtra Extracellular UniProt Extracellular Domain Genes and Gene Predictions unipLocSignal Signal Peptide UniProt Signal Peptides Genes and Gene Predictions unipAliTrembl TrEMBL Aln. UCSC alignment of TrEMBL proteins to genome Genes and Gene Predictions unipAliSwissprot SwissProt Aln. UCSC alignment of SwissProt proteins to genome (dark blue: main isoform, light blue: alternative isoforms) Genes and Gene Predictions windowmaskerSdust WM + SDust Genomic Intervals Masked by WindowMasker + SDust Variation and Repeats Description This track depicts masked sequence as determined by WindowMasker. The WindowMasker tool is included in the NCBI C++ toolkit. The source code for the entire toolkit is available from the NCBI FTP site. Methods To create this track, WindowMasker was run with the following parameters: windowmasker -mk_counts true -input braFlo1.fa -output wm_counts windowmasker -ustat wm_counts -sdust true -input braFlo1.fa -output repeats.bed The repeats.bed (BED3) file was loaded into the "windowmaskerSdust" table for this track. References Morgulis A, Gertz EM, Schäffer AA, Agarwala R. WindowMasker: window-based masker for sequenced genomes. Bioinformatics. 2006 Jan 15;22(2):134-41. PMID: 16287941 cons5way Conservation 5-Way Multiz Alignment & Conservation Comparative Genomics Description This track shows multiple alignments of 5 vertebrate species with a measure of evolutionary conservation, based on a phylogenetic hidden Markov model, phastCons (Siepel et al., 2005). The multiple alignments were generated using multiz and other tools in the UCSC/Penn State Bioinformatics comparative genomics alignment pipeline. The conservation measurements were created using the phastCons package from Adam Siepel at Cold Spring Harbor Laboratory. Multiz alignments of the following assemblies were used to generate this track: OrganismSpeciesRelease date UCSC versionalignment type LanceletBranchiostoma floridae Mar 2006braFlo1reference species LampreyPetromyzon marinus June 2007petMar1reciprocal best net ChickenGallus gallus May 2006galGal3reciprocal best net MouseMus musculus Jul 2007mm9reciprocal best net HumanHomo sapiens Mar 2006hg18reciprocal best net Table 1. Genome assemblies included in the 5-way Conservation track. Display Conventions and Configuration The track configuration options allow the user to display either the vertebrate or placental mammal conservation scores, or both simultaneously. In full and pack display modes, conservation scores are displayed as a wiggle track (histogram) in which the height reflects the size of the score. The conservation wiggles can be configured in a variety of ways to highlight different aspects of the displayed information. Click the Graph configuration help link for an explanation of the configuration options. Pairwise alignments of each species to the lancelet genome are displayed below the conservation histogram as a grayscale density plot (in pack mode) or as a wiggle (in full mode) that indicates alignment quality. In dense display mode, conservation is shown in grayscale using darker values to indicate higher levels of overall conservation as scored by phastCons. Checkboxes on the track configuration page allow selection of the species to include in the pairwise display. Note that excluding species from the pairwise display does not alter the the conservation score display. To view detailed information about the alignments at a specific position, zoom the display in to 30,000 or fewer bases, then click on the alignment. Gap Annotation The Display chains between alignments configuration option enables display of gaps between alignment blocks in the pairwise alignments in a manner similar to the Chain track display. The following conventions are used: Single line: No bases in the aligned species. Possibly due to a lineage-specific insertion between the aligned blocks in the lancelet genome or a lineage-specific deletion between the aligned blocks in the aligning species. Double line: Aligning species has one or more unalignable bases in the gap region. Possibly due to excessive evolutionary distance between species or independent indels in the region between the aligned blocks in both species. Pale yellow coloring: Aligning species has Ns in the gap region. Reflects uncertainty in the relationship between the DNA of both species, due to lack of sequence in relevant portions of the aligning species. Genomic Breaks Discontinuities in the genomic context (chromosome, scaffold or region) of the aligned DNA in the aligning species are shown as follows: Vertical blue bar: Represents a discontinuity that persists indefinitely on either side, e.g. a large region of DNA on either side of the bar comes from a different chromosome in the aligned species due to a large scale rearrangement. Green square brackets: Enclose shorter alignments consisting of DNA from one genomic context in the aligned species nested inside a larger chain of alignments from a different genomic context. The alignment within the brackets may represent a short misalignment, a lineage-specific insertion of a transposon in the lancelet genome that aligns to a paralogous copy somewhere else in the aligned species, or other similar occurrence. Base Level When zoomed-in to the base-level display, the track shows the base composition of each alignment. The numbers and symbols on the Gaps line indicate the lengths of gaps in the lancelet sequence at those alignment positions relative to the longest non-lancelet sequence. If there is sufficient space in the display, the size of the gap is shown. If the space is insufficient and the gap size is a multiple of 3, a "*" is displayed; other gap sizes are indicated by "+". Codon translation is available in base-level display mode if the displayed region is identified as a coding segment. To display this annotation, select the species for translation from the pull-down menu in the Codon Translation configuration section at the top of the page. Then, select one of the following modes: No codon translation: The gene annotation is not used; the bases are displayed without translation. Use default species reading frames for translation: The annotations from the genome displayed in the Default species to establish reading frame pull-down menu are used to translate all the aligned species present in the alignment. Use reading frames for species if available, otherwise no translation: Codon translation is performed only for those species where the region is annotated as protein coding. Use reading frames for species if available, otherwise use default species: Codon translation is done on those species that are annotated as being protein coding over the aligned region using species-specific annotation; the remaining species are translated using the default species annotation. Codon translation uses the following gene tracks as the basis for translation, depending on the species chosen (Table 2). Gene TrackSpecies UCSC Genesmouse Ensembl Geneshuman, chicken Xeno mRNAslamprey, lancelet Table 2. Gene tracks used for codon translation. Methods Pairwise alignments with the human genome were generated for each species using blastz from repeat-masked genomic sequence. Pairwise alignments were then linked into chains using a dynamic programming algorithm that finds maximally scoring chains of gapless subsections of the alignments organized in a kd-tree. The scoring matrix and parameters for pairwise alignment and chaining were tuned for each species based on phylogenetic distance from the reference. High-scoring chains were then placed along the genome, with gaps filled by lower-scoring chains, to produce an alignment net. For more information about the chaining and netting process and parameters for each species, see the description pages for the Chain and Net tracks. An additional filtering step was introduced in the generation of the 5-way conservation track to reduce the number of paralogs and pseudogenes from the high-quality assemblies and the suspect alignments from the low-quality assemblies: the pairwise alignments of high-quality mammalian sequences (placental and marsupial) were filtered based on synteny; those for 2X mammalian genomes were filtered to retain only alignments of best quality in both the target and query ("reciprocal best"). The resulting best-in-genome pairwise alignments were progressively aligned using multiz/autoMZ, following the tree topology diagrammed above, to produce multiple alignments. The multiple alignments were post-processed to add annotations indicating alignment gaps, genomic breaks, and base quality of the component sequences. The annotated multiple alignments, in MAF format, are available for bulk download. An alignment summary table containing an entry for each alignment block in each species was generated to improve track display performance at large scales. Framing tables were constructed to enable visualization of codons in the multiple alignment display. Conservation scoring was performed using the PhastCons package (A. Siepel), which computes conservation based on a two-state phylogenetic hidden Markov model (HMM). PhastCons measurements rely on a tree model containing the tree topology, branch lengths representing evolutionary distance at neutrally evolving sites, the background distribution of nucleotides, and a substitution rate matrix. The vertebrate tree model for this track was generated using the phyloFit program from the phastCons package (REV model, EM algorithm, medium precision) using multiple alignments of 4-fold degenerate sites extracted from the 28-way human(hg18) alignment (msa_view). The 4d sites were derived from the Oct 2005 Gencode Reference Gene set, which was filtered to select single-coverage long transcripts. The phastCons parameters used for the conservation measurement were: expected-length=45, target-coverage=.3 and rho=.31 The phastCons program computes conservation scores based on a phylo-HMM, a type of probabilistic model that describes both the process of DNA substitution at each site in a genome and the way this process changes from one site to the next (Felsenstein and Churchill 1996, Yang 1995, Siepel and Haussler 2005). PhastCons uses a two-state phylo-HMM, with a state for conserved regions and a state for non-conserved regions. The value plotted at each site is the posterior probability that the corresponding alignment column was "generated" by the conserved state of the phylo-HMM. These scores reflect the phylogeny (including branch lengths) of the species in question, a continuous-time Markov model of the nucleotide substitution process, and a tendency for conservation levels to be autocorrelated along the genome (i.e., to be similar at adjacent sites). The general reversible (REV) substitution model was used. Unlike many conservation-scoring programs, note that phastCons does not rely on a sliding window of fixed size; therefore, short highly-conserved regions and long moderately conserved regions can both obtain high scores. More information about phastCons can be found in Siepel et al. 2005. PhastCons currently treats alignment gaps as missing data, which sometimes has the effect of producing undesirably high conservation scores in gappy regions of the alignment. We are looking at several possible ways of improving the handling of alignment gaps. Credits This track was created using the following programs: Alignment tools: blastz and multiz by Minmei Hou, Scott Schwartz and Webb Miller of the Penn State Bioinformatics Group Chaining and Netting: axtChain, chainNet by Jim Kent at UCSC Conservation scoring: PhastCons, phyloFit, tree_doctor, msa_view by Adam Siepel while at UCSC, now at Cold Spring Harbor Laboratory MAF Annotation tools: mafAddIRows by Brian Raney, UCSC; mafAddQRows by Richard Burhans, Penn State; genePredToMafFrames by Mark Diekhans, UCSC Tree image generator: phyloPng by Galt Barber, UCSC Conservation track display: Kate Rosenbloom, Hiram Clawson (wiggle display), and Brian Raney (gap annotation and codon framing) at UCSC The phylogenetic tree is based on Murphy et al. (2001) and general consensus in the vertebrate phylogeny community as of March 2007. References Phylo-HMMs and phastCons: Felsenstein J, Churchill GA. A Hidden Markov Model approach to variation among sites in rate of evolution. Mol Biol Evol. 1996 Jan;13(1):93-104. PMID: 8583911 Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, Clawson H, Spieth J, Hillier LW, Richards S, et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 2005 Aug;15(8):1034-50. PMID: 16024819; PMC: PMC1182216 Siepel A, Haussler D. Phylogenetic Hidden Markov Models. In: Nielsen R, editor. Statistical Methods in Molecular Evolution. New York: Springer; 2005. pp. 325-351. Yang Z. A space-time process model for the evolution of DNA sequences. Genetics. 1995 Feb;139(2):993-1005. PMID: 7713447; PMC: PMC1206396 Chain/Net: Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D. Evolution's cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11484-9. PMID: 14500911; PMC: PMC208784 Multiz: Blanchette M, Kent WJ, Riemer C, Elnitski L, Smit AF, Roskin KM, Baertsch R, Rosenbloom K, Clawson H, Green ED, et al. Aligning multiple genomic sequences with the threaded blockset aligner. Genome Res. 2004 Apr;14(4):708-15. PMID: 15060014; PMC: PMC383317 Blastz: Chiaromonte F, Yap VB, Miller W. Scoring pairwise genomic sequence alignments. Pac Symp Biocomput. 2002:115-26. PMID: 11928468 Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, Haussler D, Miller W. Human-mouse alignments with BLASTZ. Genome Res. 2003 Jan;13(1):103-7. PMID: 12529312; PMC: PMC430961 Phylogenetic Tree: Murphy WJ, Eizirik E, O'Brien SJ, Madsen O, Scally M, Douady CJ, Teeling E, Ryder OA, Stanhope MJ, de Jong WW, Springer MS. Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science. 2001 Dec 14;294(5550):2348-51. PMID: 11743200 cons5wayViewalign Multiz Alignments 5-Way Multiz Alignment & Conservation Comparative Genomics multiz5way Multiz Align Multiz Alignments 5 Species Comparative Genomics Description This track shows multiple alignments of 5 vertebrate species with a measure of evolutionary conservation, based on a phylogenetic hidden Markov model, phastCons (Siepel et al., 2005). The multiple alignments were generated using multiz and other tools in the UCSC/Penn State Bioinformatics comparative genomics alignment pipeline. The conservation measurements were created using the phastCons package from Adam Siepel at Cold Spring Harbor Laboratory. Multiz alignments of the following assemblies were used to generate this track: OrganismSpeciesRelease date UCSC versionalignment type LanceletBranchiostoma floridae Mar 2006braFlo1reference species LampreyPetromyzon marinus June 2007petMar1reciprocal best net ChickenGallus gallus May 2006galGal3reciprocal best net MouseMus musculus Jul 2007mm9reciprocal best net HumanHomo sapiens Mar 2006hg18reciprocal best net Table 1. Genome assemblies included in the 5-way Conservation track. Display Conventions and Configuration The track configuration options allow the user to display either the vertebrate or placental mammal conservation scores, or both simultaneously. In full and pack display modes, conservation scores are displayed as a wiggle track (histogram) in which the height reflects the size of the score. The conservation wiggles can be configured in a variety of ways to highlight different aspects of the displayed information. Click the Graph configuration help link for an explanation of the configuration options. Pairwise alignments of each species to the lancelet genome are displayed below the conservation histogram as a grayscale density plot (in pack mode) or as a wiggle (in full mode) that indicates alignment quality. In dense display mode, conservation is shown in grayscale using darker values to indicate higher levels of overall conservation as scored by phastCons. Checkboxes on the track configuration page allow selection of the species to include in the pairwise display. Note that excluding species from the pairwise display does not alter the the conservation score display. To view detailed information about the alignments at a specific position, zoom the display in to 30,000 or fewer bases, then click on the alignment. Gap Annotation The Display chains between alignments configuration option enables display of gaps between alignment blocks in the pairwise alignments in a manner similar to the Chain track display. The following conventions are used: Single line: No bases in the aligned species. Possibly due to a lineage-specific insertion between the aligned blocks in the lancelet genome or a lineage-specific deletion between the aligned blocks in the aligning species. Double line: Aligning species has one or more unalignable bases in the gap region. Possibly due to excessive evolutionary distance between species or independent indels in the region between the aligned blocks in both species. Pale yellow coloring: Aligning species has Ns in the gap region. Reflects uncertainty in the relationship between the DNA of both species, due to lack of sequence in relevant portions of the aligning species. Genomic Breaks Discontinuities in the genomic context (chromosome, scaffold or region) of the aligned DNA in the aligning species are shown as follows: Vertical blue bar: Represents a discontinuity that persists indefinitely on either side, e.g. a large region of DNA on either side of the bar comes from a different chromosome in the aligned species due to a large scale rearrangement. Green square brackets: Enclose shorter alignments consisting of DNA from one genomic context in the aligned species nested inside a larger chain of alignments from a different genomic context. The alignment within the brackets may represent a short misalignment, a lineage-specific insertion of a transposon in the lancelet genome that aligns to a paralogous copy somewhere else in the aligned species, or other similar occurrence. Base Level When zoomed-in to the base-level display, the track shows the base composition of each alignment. The numbers and symbols on the Gaps line indicate the lengths of gaps in the lancelet sequence at those alignment positions relative to the longest non-lancelet sequence. If there is sufficient space in the display, the size of the gap is shown. If the space is insufficient and the gap size is a multiple of 3, a "*" is displayed; other gap sizes are indicated by "+". Codon translation is available in base-level display mode if the displayed region is identified as a coding segment. To display this annotation, select the species for translation from the pull-down menu in the Codon Translation configuration section at the top of the page. Then, select one of the following modes: No codon translation: The gene annotation is not used; the bases are displayed without translation. Use default species reading frames for translation: The annotations from the genome displayed in the Default species to establish reading frame pull-down menu are used to translate all the aligned species present in the alignment. Use reading frames for species if available, otherwise no translation: Codon translation is performed only for those species where the region is annotated as protein coding. Use reading frames for species if available, otherwise use default species: Codon translation is done on those species that are annotated as being protein coding over the aligned region using species-specific annotation; the remaining species are translated using the default species annotation. Codon translation uses the following gene tracks as the basis for translation, depending on the species chosen (Table 2). Gene TrackSpecies UCSC Genesmouse Ensembl Geneshuman, chicken Xeno mRNAslamprey, lancelet Table 2. Gene tracks used for codon translation. Methods Pairwise alignments with the human genome were generated for each species using blastz from repeat-masked genomic sequence. Pairwise alignments were then linked into chains using a dynamic programming algorithm that finds maximally scoring chains of gapless subsections of the alignments organized in a kd-tree. The scoring matrix and parameters for pairwise alignment and chaining were tuned for each species based on phylogenetic distance from the reference. High-scoring chains were then placed along the genome, with gaps filled by lower-scoring chains, to produce an alignment net. For more information about the chaining and netting process and parameters for each species, see the description pages for the Chain and Net tracks. An additional filtering step was introduced in the generation of the 5-way conservation track to reduce the number of paralogs and pseudogenes from the high-quality assemblies and the suspect alignments from the low-quality assemblies: the pairwise alignments of high-quality mammalian sequences (placental and marsupial) were filtered based on synteny; those for 2X mammalian genomes were filtered to retain only alignments of best quality in both the target and query ("reciprocal best"). The resulting best-in-genome pairwise alignments were progressively aligned using multiz/autoMZ, following the tree topology diagrammed above, to produce multiple alignments. The multiple alignments were post-processed to add annotations indicating alignment gaps, genomic breaks, and base quality of the component sequences. The annotated multiple alignments, in MAF format, are available for bulk download. An alignment summary table containing an entry for each alignment block in each species was generated to improve track display performance at large scales. Framing tables were constructed to enable visualization of codons in the multiple alignment display. Conservation scoring was performed using the PhastCons package (A. Siepel), which computes conservation based on a two-state phylogenetic hidden Markov model (HMM). PhastCons measurements rely on a tree model containing the tree topology, branch lengths representing evolutionary distance at neutrally evolving sites, the background distribution of nucleotides, and a substitution rate matrix. The vertebrate tree model for this track was generated using the phyloFit program from the phastCons package (REV model, EM algorithm, medium precision) using multiple alignments of 4-fold degenerate sites extracted from the 28-way human(hg18) alignment (msa_view). The 4d sites were derived from the Oct 2005 Gencode Reference Gene set, which was filtered to select single-coverage long transcripts. The phastCons parameters used for the conservation measurement were: expected-length=45, target-coverage=.3 and rho=.31 The phastCons program computes conservation scores based on a phylo-HMM, a type of probabilistic model that describes both the process of DNA substitution at each site in a genome and the way this process changes from one site to the next (Felsenstein and Churchill 1996, Yang 1995, Siepel and Haussler 2005). PhastCons uses a two-state phylo-HMM, with a state for conserved regions and a state for non-conserved regions. The value plotted at each site is the posterior probability that the corresponding alignment column was "generated" by the conserved state of the phylo-HMM. These scores reflect the phylogeny (including branch lengths) of the species in question, a continuous-time Markov model of the nucleotide substitution process, and a tendency for conservation levels to be autocorrelated along the genome (i.e., to be similar at adjacent sites). The general reversible (REV) substitution model was used. Unlike many conservation-scoring programs, note that phastCons does not rely on a sliding window of fixed size; therefore, short highly-conserved regions and long moderately conserved regions can both obtain high scores. More information about phastCons can be found in Siepel et al. 2005. PhastCons currently treats alignment gaps as missing data, which sometimes has the effect of producing undesirably high conservation scores in gappy regions of the alignment. We are looking at several possible ways of improving the handling of alignment gaps. Credits This track was created using the following programs: Alignment tools: blastz and multiz by Minmei Hou, Scott Schwartz and Webb Miller of the Penn State Bioinformatics Group Chaining and Netting: axtChain, chainNet by Jim Kent at UCSC Conservation scoring: PhastCons, phyloFit, tree_doctor, msa_view by Adam Siepel while at UCSC, now at Cold Spring Harbor Laboratory MAF Annotation tools: mafAddIRows by Brian Raney, UCSC; mafAddQRows by Richard Burhans, Penn State; genePredToMafFrames by Mark Diekhans, UCSC Tree image generator: phyloPng by Galt Barber, UCSC Conservation track display: Kate Rosenbloom, Hiram Clawson (wiggle display), and Brian Raney (gap annotation and codon framing) at UCSC The phylogenetic tree is based on Murphy et al. (2001) and general consensus in the vertebrate phylogeny community as of March 2007. References Phylo-HMMs and phastCons: Felsenstein J, Churchill GA. A Hidden Markov Model approach to variation among sites in rate of evolution. Mol Biol Evol. 1996 Jan;13(1):93-104. PMID: 8583911 Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, Clawson H, Spieth J, Hillier LW, Richards S, et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 2005 Aug;15(8):1034-50. PMID: 16024819; PMC: PMC1182216 Siepel A, Haussler D. Phylogenetic Hidden Markov Models. In: Nielsen R, editor. Statistical Methods in Molecular Evolution. New York: Springer; 2005. pp. 325-351. Yang Z. A space-time process model for the evolution of DNA sequences. Genetics. 1995 Feb;139(2):993-1005. PMID: 7713447; PMC: PMC1206396 Chain/Net: Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D. Evolution's cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11484-9. PMID: 14500911; PMC: PMC208784 Multiz: Blanchette M, Kent WJ, Riemer C, Elnitski L, Smit AF, Roskin KM, Baertsch R, Rosenbloom K, Clawson H, Green ED, et al. Aligning multiple genomic sequences with the threaded blockset aligner. Genome Res. 2004 Apr;14(4):708-15. PMID: 15060014; PMC: PMC383317 Blastz: Chiaromonte F, Yap VB, Miller W. Scoring pairwise genomic sequence alignments. Pac Symp Biocomput. 2002:115-26. PMID: 11928468 Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, Haussler D, Miller W. Human-mouse alignments with BLASTZ. Genome Res. 2003 Jan;13(1):103-7. PMID: 12529312; PMC: PMC430961 Phylogenetic Tree: Murphy WJ, Eizirik E, O'Brien SJ, Madsen O, Scally M, Douady CJ, Teeling E, Ryder OA, Stanhope MJ, de Jong WW, Springer MS. Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science. 2001 Dec 14;294(5550):2348-51. PMID: 11743200 cons5wayViewphastcons Element Conservation (phastCons) 5-Way Multiz Alignment & Conservation Comparative Genomics phastCons5way 5 Species Cons 5 Species Conservation by PhastCons Comparative Genomics cons5wayViewelements Conserved Elements 5-Way Multiz Alignment & Conservation Comparative Genomics phastConsElements5way 5 Species El 5 Species Conserved Elements Comparative Genomics Description This track shows predictions of conserved elements produced by the phastCons program. PhastCons is part of the PHAST (PHylogenetic Analysis with Space/Time models) package. The predictions are based on a phylogenetic hidden Markov model (phylo-HMM), a type of probabilistic model that describes both the process of DNA substitution at each site in a genome and the way this process changes from one site to the next. Methods Best-in-genome pairwise alignments were generated for each species using blastz, followed by chaining and netting. A multiple alignment was then constructed from these pairwise alignments using multiz. Predictions of conserved elements were then obtained by running phastCons on the multiple alignments with the --most-conserved option. PhastCons constructs a two-state phylo-HMM with a state for conserved regions and a state for non-conserved regions. The two states share a single phylogenetic model, except that the branch lengths of the tree associated with the conserved state are multiplied by a constant scaling factor rho (0 <= rho <= 1). The free parameters of the phylo-HMM, including the scaling factor rho, are estimated from the data by maximum likelihood using an EM algorithm. This procedure is subject to certain constraints on the "coverage" of the genome by conserved elements and the "smoothness" of the conservation scores. Details can be found in Siepel et al. (2005). The predicted conserved elements are segments of the alignment that are likely to have been "generated" by the conserved state of the phylo-HMM. Each element is assigned a log-odds score equal to its log probability under the conserved model minus its log probability under the non-conserved model. The "score" field associated with this track contains transformed log-odds scores, taking values between 0 and 1000. (The scores are transformed using a monotonic function of the form a * log(x) + b.) The raw log odds scores are retained in the "name" field and can be seen on the details page or in the browser when the track's display mode is set to "pack" or "full". Credits This track was created at UCSC using the following programs: Blastz and multiz by Minmei Hou, Scott Schwartz and Webb Miller of the Penn State Bioinformatics Group. AxtBest, axtChain, chainNet, netSyntenic, and netClass by Jim Kent at UCSC. PhastCons by Adam Siepel at Cornell University. References PhastCons: Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, Clawson H, Spieth J, Hillier LW, Richards S, et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 2005 Aug;15(8):1034-50. PMID: 16024819; PMC: PMC1182216 Chain/Net: Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D. Evolution's cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11484-9. PMID: 14500911; PMC: PMC208784 Multiz: Blanchette M, Kent WJ, Riemer C, Elnitski L, Smit AF, Roskin KM, Baertsch R, Rosenbloom K, Clawson H, Green ED, et al. Aligning multiple genomic sequences with the threaded blockset aligner. Genome Res. 2004 Apr;14(4):708-15. PMID: 15060014; PMC: PMC383317 Blastz: Chiaromonte F, Yap VB, Miller W. Scoring pairwise genomic sequence alignments. Pac Symp Biocomput. 2002:115-26. PMID: 11928468 Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, Haussler D, Miller W. Human-mouse alignments with BLASTZ. Genome Res. 2003 Jan;13(1):103-7. PMID: 12529312; PMC: PMC430961 chainNetPetMar1 Lamprey Chain/Net Lamprey (Mar. 2007 (WUGSC 3.0/petMar1)), Chain and Net Alignments Comparative Genomics Description This track shows regions of the genome that are alignable to other genomes ("chain" subtracks) or in synteny ("net" subtracks). The alignable parts are shown with thick blocks that look like exons. Non-alignable parts between these are shown like introns. Chain Track The chain track shows alignments of lamprey (Mar. 2007 (WUGSC 3.0/petMar1)) to the lancelet genome using a gap scoring system that allows longer gaps than traditional affine gap scoring systems. It can also tolerate gaps in both lamprey and lancelet simultaneously. These "double-sided" gaps can be caused by local inversions and overlapping deletions in both species. The chain track displays boxes joined together by either single or double lines. The boxes represent aligning regions. Single lines indicate gaps that are largely due to a deletion in the lamprey assembly or an insertion in the lancelet assembly. Double lines represent more complex gaps that involve substantial sequence in both species. This may result from inversions, overlapping deletions, an abundance of local mutation, or an unsequenced gap in one species. In cases where multiple chains align over a particular region of the lancelet genome, the chains with single-lined gaps are often due to processed pseudogenes, while chains with double-lined gaps are more often due to paralogs and unprocessed pseudogenes. In the "pack" and "full" display modes, the individual feature names indicate the chromosome, strand, and location (in thousands) of the match for each matching alignment. Net Track The net track shows the best lamprey/lancelet chain for every part of the lancelet genome. It is useful for finding syntenic regions, possibly orthologs, and for studying genome rearrangement. The lamprey sequence used in this annotation is from the Mar. 2007 (WUGSC 3.0/petMar1) assembly. Display Conventions and Configuration Chain Track By default, the chains to chromosome-based assemblies are colored based on which chromosome they map to in the aligning organism. To turn off the coloring, check the "off" button next to: Color track based on chromosome. To display only the chains of one chromosome in the aligning organism, enter the name of that chromosome (e.g. chr4) in box next to: Filter by chromosome. Net Track In full display mode, the top-level (level 1) chains are the largest, highest-scoring chains that span this region. In many cases gaps exist in the top-level chain. When possible, these are filled in by other chains that are displayed at level 2. The gaps in level 2 chains may be filled by level 3 chains and so forth. In the graphical display, the boxes represent ungapped alignments; the lines represent gaps. Click on a box to view detailed information about the chain as a whole; click on a line to display information about the gap. The detailed information is useful in determining the cause of the gap or, for lower level chains, the genomic rearrangement. Individual items in the display are categorized as one of four types (other than gap): Top - the best, longest match. Displayed on level 1. Syn - line-ups on the same chromosome as the gap in the level above it. Inv - a line-up on the same chromosome as the gap above it, but in the opposite orientation. NonSyn - a match to a chromosome different from the gap in the level above. Methods Chain track Transposons that have been inserted since the lamprey/lancelet split were removed from the assemblies. The abbreviated genomes were aligned with lastz, and the transposons were added back in. The resulting alignments were converted into axt format using the lavToAxt program. The axt alignments were fed into axtChain, which organizes all alignments between a single lamprey chromosome and a single lancelet chromosome into a group and creates a kd-tree out of the gapless subsections (blocks) of the alignments. A dynamic program was then run over the kd-trees to find the maximally scoring chains of these blocks. The following matrix was used:  ACGT A91-90-25-100 C-90100-100-25 G-25-100100-90 T-100-25-9091 Chains scoring below a minimum score of "5000" were discarded; the remaining chains are displayed in this track. The linear gap matrix used with axtChain: -linearGap=loose tablesize 11 smallSize 111 position 1 2 3 11 111 2111 12111 32111 72111 152111 252111 qGap 325 360 400 450 600 1100 3600 7600 15600 31600 56600 tGap 325 360 400 450 600 1100 3600 7600 15600 31600 56600 bothGap 625 660 700 750 900 1400 4000 8000 16000 32000 57000 Net track Chains were derived from lastz alignments, using the methods described on the chain tracks description pages, and sorted with the highest-scoring chains in the genome ranked first. The program chainNet was then used to place the chains one at a time, trimming them as necessary to fit into sections not already covered by a higher-scoring chain. During this process, a natural hierarchy emerged in which a chain that filled a gap in a higher-scoring chain was placed underneath that chain. The program netSyntenic was used to fill in information about the relationship between higher- and lower-level chains, such as whether a lower-level chain was syntenic or inverted relative to the higher-level chain. The program netClass was then used to fill in how much of the gaps and chains contained Ns (sequencing gaps) in one or both species and how much was filled with transposons inserted before and after the two organisms diverged. Credits Lastz (previously known as blastz) was developed at Pennsylvania State University by Minmei Hou, Scott Schwartz, Zheng Zhang, and Webb Miller with advice from Ross Hardison. Lineage-specific repeats were identified by Arian Smit and his RepeatMasker program. The axtChain program was developed at the University of California at Santa Cruz by Jim Kent with advice from Webb Miller and David Haussler. The browser display and database storage of the chains and nets were created by Robert Baertsch and Jim Kent. The chainNet, netSyntenic, and netClass programs were developed at the University of California Santa Cruz by Jim Kent. References Harris, R.S. (2007) Improved pairwise alignment of genomic DNA Ph.D. Thesis, The Pennsylvania State University Chiaromonte F, Yap VB, Miller W. Scoring pairwise genomic sequence alignments. Pac Symp Biocomput. 2002:115-26. PMID: 11928468 Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D. Evolution's cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11484-9. PMID: 14500911; PMC: PMC208784 Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, Haussler D, Miller W. Human-mouse alignments with BLASTZ. Genome Res. 2003 Jan;13(1):103-7. PMID: 12529312; PMC: PMC430961 chainNetPetMar1Viewnet Net Lamprey (Mar. 2007 (WUGSC 3.0/petMar1)), Chain and Net Alignments Comparative Genomics netPetMar1 Lamprey Net Lamprey (Mar. 2007 (WUGSC 3.0/petMar1)) Alignment Net Comparative Genomics Description This track shows regions of the genome that are alignable to other genomes ("chain" subtracks) or in synteny ("net" subtracks). The alignable parts are shown with thick blocks that look like exons. Non-alignable parts between these are shown like introns. Chain Track The chain track shows alignments of lamprey (Mar. 2007 (WUGSC 3.0/petMar1)) to the lancelet genome using a gap scoring system that allows longer gaps than traditional affine gap scoring systems. It can also tolerate gaps in both lamprey and lancelet simultaneously. These "double-sided" gaps can be caused by local inversions and overlapping deletions in both species. The chain track displays boxes joined together by either single or double lines. The boxes represent aligning regions. Single lines indicate gaps that are largely due to a deletion in the lamprey assembly or an insertion in the lancelet assembly. Double lines represent more complex gaps that involve substantial sequence in both species. This may result from inversions, overlapping deletions, an abundance of local mutation, or an unsequenced gap in one species. In cases where multiple chains align over a particular region of the lancelet genome, the chains with single-lined gaps are often due to processed pseudogenes, while chains with double-lined gaps are more often due to paralogs and unprocessed pseudogenes. In the "pack" and "full" display modes, the individual feature names indicate the chromosome, strand, and location (in thousands) of the match for each matching alignment. Net Track The net track shows the best lamprey/lancelet chain for every part of the lancelet genome. It is useful for finding syntenic regions, possibly orthologs, and for studying genome rearrangement. The lamprey sequence used in this annotation is from the Mar. 2007 (WUGSC 3.0/petMar1) assembly. Display Conventions and Configuration Chain Track By default, the chains to chromosome-based assemblies are colored based on which chromosome they map to in the aligning organism. To turn off the coloring, check the "off" button next to: Color track based on chromosome. To display only the chains of one chromosome in the aligning organism, enter the name of that chromosome (e.g. chr4) in box next to: Filter by chromosome. Net Track In full display mode, the top-level (level 1) chains are the largest, highest-scoring chains that span this region. In many cases gaps exist in the top-level chain. When possible, these are filled in by other chains that are displayed at level 2. The gaps in level 2 chains may be filled by level 3 chains and so forth. In the graphical display, the boxes represent ungapped alignments; the lines represent gaps. Click on a box to view detailed information about the chain as a whole; click on a line to display information about the gap. The detailed information is useful in determining the cause of the gap or, for lower level chains, the genomic rearrangement. Individual items in the display are categorized as one of four types (other than gap): Top - the best, longest match. Displayed on level 1. Syn - line-ups on the same chromosome as the gap in the level above it. Inv - a line-up on the same chromosome as the gap above it, but in the opposite orientation. NonSyn - a match to a chromosome different from the gap in the level above. Methods Chain track Transposons that have been inserted since the lamprey/lancelet split were removed from the assemblies. The abbreviated genomes were aligned with lastz, and the transposons were added back in. The resulting alignments were converted into axt format using the lavToAxt program. The axt alignments were fed into axtChain, which organizes all alignments between a single lamprey chromosome and a single lancelet chromosome into a group and creates a kd-tree out of the gapless subsections (blocks) of the alignments. A dynamic program was then run over the kd-trees to find the maximally scoring chains of these blocks. The following matrix was used:  ACGT A91-90-25-100 C-90100-100-25 G-25-100100-90 T-100-25-9091 Chains scoring below a minimum score of "5000" were discarded; the remaining chains are displayed in this track. The linear gap matrix used with axtChain: -linearGap=loose tablesize 11 smallSize 111 position 1 2 3 11 111 2111 12111 32111 72111 152111 252111 qGap 325 360 400 450 600 1100 3600 7600 15600 31600 56600 tGap 325 360 400 450 600 1100 3600 7600 15600 31600 56600 bothGap 625 660 700 750 900 1400 4000 8000 16000 32000 57000 Net track Chains were derived from lastz alignments, using the methods described on the chain tracks description pages, and sorted with the highest-scoring chains in the genome ranked first. The program chainNet was then used to place the chains one at a time, trimming them as necessary to fit into sections not already covered by a higher-scoring chain. During this process, a natural hierarchy emerged in which a chain that filled a gap in a higher-scoring chain was placed underneath that chain. The program netSyntenic was used to fill in information about the relationship between higher- and lower-level chains, such as whether a lower-level chain was syntenic or inverted relative to the higher-level chain. The program netClass was then used to fill in how much of the gaps and chains contained Ns (sequencing gaps) in one or both species and how much was filled with transposons inserted before and after the two organisms diverged. Credits Lastz (previously known as blastz) was developed at Pennsylvania State University by Minmei Hou, Scott Schwartz, Zheng Zhang, and Webb Miller with advice from Ross Hardison. Lineage-specific repeats were identified by Arian Smit and his RepeatMasker program. The axtChain program was developed at the University of California at Santa Cruz by Jim Kent with advice from Webb Miller and David Haussler. The browser display and database storage of the chains and nets were created by Robert Baertsch and Jim Kent. The chainNet, netSyntenic, and netClass programs were developed at the University of California Santa Cruz by Jim Kent. References Harris, R.S. (2007) Improved pairwise alignment of genomic DNA Ph.D. Thesis, The Pennsylvania State University Chiaromonte F, Yap VB, Miller W. Scoring pairwise genomic sequence alignments. Pac Symp Biocomput. 2002:115-26. PMID: 11928468 Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D. Evolution's cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11484-9. PMID: 14500911; PMC: PMC208784 Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, Haussler D, Miller W. Human-mouse alignments with BLASTZ. Genome Res. 2003 Jan;13(1):103-7. PMID: 12529312; PMC: PMC430961 chainNetPetMar1Viewchain Chain Lamprey (Mar. 2007 (WUGSC 3.0/petMar1)), Chain and Net Alignments Comparative Genomics chainPetMar1 Lamprey Chain Lamprey (Mar. 2007 (WUGSC 3.0/petMar1)) Chained Alignments Comparative Genomics Description This track shows regions of the genome that are alignable to other genomes ("chain" subtracks) or in synteny ("net" subtracks). The alignable parts are shown with thick blocks that look like exons. Non-alignable parts between these are shown like introns. Chain Track The chain track shows alignments of lamprey (Mar. 2007 (WUGSC 3.0/petMar1)) to the lancelet genome using a gap scoring system that allows longer gaps than traditional affine gap scoring systems. It can also tolerate gaps in both lamprey and lancelet simultaneously. These "double-sided" gaps can be caused by local inversions and overlapping deletions in both species. The chain track displays boxes joined together by either single or double lines. The boxes represent aligning regions. Single lines indicate gaps that are largely due to a deletion in the lamprey assembly or an insertion in the lancelet assembly. Double lines represent more complex gaps that involve substantial sequence in both species. This may result from inversions, overlapping deletions, an abundance of local mutation, or an unsequenced gap in one species. In cases where multiple chains align over a particular region of the lancelet genome, the chains with single-lined gaps are often due to processed pseudogenes, while chains with double-lined gaps are more often due to paralogs and unprocessed pseudogenes. In the "pack" and "full" display modes, the individual feature names indicate the chromosome, strand, and location (in thousands) of the match for each matching alignment. Net Track The net track shows the best lamprey/lancelet chain for every part of the lancelet genome. It is useful for finding syntenic regions, possibly orthologs, and for studying genome rearrangement. The lamprey sequence used in this annotation is from the Mar. 2007 (WUGSC 3.0/petMar1) assembly. Display Conventions and Configuration Chain Track By default, the chains to chromosome-based assemblies are colored based on which chromosome they map to in the aligning organism. To turn off the coloring, check the "off" button next to: Color track based on chromosome. To display only the chains of one chromosome in the aligning organism, enter the name of that chromosome (e.g. chr4) in box next to: Filter by chromosome. Net Track In full display mode, the top-level (level 1) chains are the largest, highest-scoring chains that span this region. In many cases gaps exist in the top-level chain. When possible, these are filled in by other chains that are displayed at level 2. The gaps in level 2 chains may be filled by level 3 chains and so forth. In the graphical display, the boxes represent ungapped alignments; the lines represent gaps. Click on a box to view detailed information about the chain as a whole; click on a line to display information about the gap. The detailed information is useful in determining the cause of the gap or, for lower level chains, the genomic rearrangement. Individual items in the display are categorized as one of four types (other than gap): Top - the best, longest match. Displayed on level 1. Syn - line-ups on the same chromosome as the gap in the level above it. Inv - a line-up on the same chromosome as the gap above it, but in the opposite orientation. NonSyn - a match to a chromosome different from the gap in the level above. Methods Chain track Transposons that have been inserted since the lamprey/lancelet split were removed from the assemblies. The abbreviated genomes were aligned with lastz, and the transposons were added back in. The resulting alignments were converted into axt format using the lavToAxt program. The axt alignments were fed into axtChain, which organizes all alignments between a single lamprey chromosome and a single lancelet chromosome into a group and creates a kd-tree out of the gapless subsections (blocks) of the alignments. A dynamic program was then run over the kd-trees to find the maximally scoring chains of these blocks. The following matrix was used:  ACGT A91-90-25-100 C-90100-100-25 G-25-100100-90 T-100-25-9091 Chains scoring below a minimum score of "5000" were discarded; the remaining chains are displayed in this track. The linear gap matrix used with axtChain: -linearGap=loose tablesize 11 smallSize 111 position 1 2 3 11 111 2111 12111 32111 72111 152111 252111 qGap 325 360 400 450 600 1100 3600 7600 15600 31600 56600 tGap 325 360 400 450 600 1100 3600 7600 15600 31600 56600 bothGap 625 660 700 750 900 1400 4000 8000 16000 32000 57000 Net track Chains were derived from lastz alignments, using the methods described on the chain tracks description pages, and sorted with the highest-scoring chains in the genome ranked first. The program chainNet was then used to place the chains one at a time, trimming them as necessary to fit into sections not already covered by a higher-scoring chain. During this process, a natural hierarchy emerged in which a chain that filled a gap in a higher-scoring chain was placed underneath that chain. The program netSyntenic was used to fill in information about the relationship between higher- and lower-level chains, such as whether a lower-level chain was syntenic or inverted relative to the higher-level chain. The program netClass was then used to fill in how much of the gaps and chains contained Ns (sequencing gaps) in one or both species and how much was filled with transposons inserted before and after the two organisms diverged. Credits Lastz (previously known as blastz) was developed at Pennsylvania State University by Minmei Hou, Scott Schwartz, Zheng Zhang, and Webb Miller with advice from Ross Hardison. Lineage-specific repeats were identified by Arian Smit and his RepeatMasker program. The axtChain program was developed at the University of California at Santa Cruz by Jim Kent with advice from Webb Miller and David Haussler. The browser display and database storage of the chains and nets were created by Robert Baertsch and Jim Kent. The chainNet, netSyntenic, and netClass programs were developed at the University of California Santa Cruz by Jim Kent. References Harris, R.S. (2007) Improved pairwise alignment of genomic DNA Ph.D. Thesis, The Pennsylvania State University Chiaromonte F, Yap VB, Miller W. Scoring pairwise genomic sequence alignments. Pac Symp Biocomput. 2002:115-26. PMID: 11928468 Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D. Evolution's cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11484-9. PMID: 14500911; PMC: PMC208784 Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, Haussler D, Miller W. Human-mouse alignments with BLASTZ. Genome Res. 2003 Jan;13(1):103-7. PMID: 12529312; PMC: PMC430961 chainNetHg18 Human Chain/Net Human (Mar. 2006 (NCBI36/hg18)), Chain and Net Alignments Comparative Genomics Description This track shows regions of the genome that are alignable to other genomes ("chain" subtracks) or in synteny ("net" subtracks). The alignable parts are shown with thick blocks that look like exons. Non-alignable parts between these are shown like introns. Chain Track The chain track shows alignments of human (Mar. 2006 (NCBI36/hg18)) to the lancelet genome using a gap scoring system that allows longer gaps than traditional affine gap scoring systems. It can also tolerate gaps in both human and lancelet simultaneously. These "double-sided" gaps can be caused by local inversions and overlapping deletions in both species. The chain track displays boxes joined together by either single or double lines. The boxes represent aligning regions. Single lines indicate gaps that are largely due to a deletion in the human assembly or an insertion in the lancelet assembly. Double lines represent more complex gaps that involve substantial sequence in both species. This may result from inversions, overlapping deletions, an abundance of local mutation, or an unsequenced gap in one species. In cases where multiple chains align over a particular region of the lancelet genome, the chains with single-lined gaps are often due to processed pseudogenes, while chains with double-lined gaps are more often due to paralogs and unprocessed pseudogenes. In the "pack" and "full" display modes, the individual feature names indicate the chromosome, strand, and location (in thousands) of the match for each matching alignment. Net Track The net track shows the best human/lancelet chain for every part of the lancelet genome. It is useful for finding syntenic regions, possibly orthologs, and for studying genome rearrangement. The human sequence used in this annotation is from the Mar. 2006 (NCBI36/hg18) assembly. Display Conventions and Configuration Chain Track By default, the chains to chromosome-based assemblies are colored based on which chromosome they map to in the aligning organism. To turn off the coloring, check the "off" button next to: Color track based on chromosome. To display only the chains of one chromosome in the aligning organism, enter the name of that chromosome (e.g. chr4) in box next to: Filter by chromosome. Net Track In full display mode, the top-level (level 1) chains are the largest, highest-scoring chains that span this region. In many cases gaps exist in the top-level chain. When possible, these are filled in by other chains that are displayed at level 2. The gaps in level 2 chains may be filled by level 3 chains and so forth. In the graphical display, the boxes represent ungapped alignments; the lines represent gaps. Click on a box to view detailed information about the chain as a whole; click on a line to display information about the gap. The detailed information is useful in determining the cause of the gap or, for lower level chains, the genomic rearrangement. Individual items in the display are categorized as one of four types (other than gap): Top - the best, longest match. Displayed on level 1. Syn - line-ups on the same chromosome as the gap in the level above it. Inv - a line-up on the same chromosome as the gap above it, but in the opposite orientation. NonSyn - a match to a chromosome different from the gap in the level above. Methods Chain track Transposons that have been inserted since the human/lancelet split were removed from the assemblies. The abbreviated genomes were aligned with lastz, and the transposons were added back in. The resulting alignments were converted into axt format using the lavToAxt program. The axt alignments were fed into axtChain, which organizes all alignments between a single human chromosome and a single lancelet chromosome into a group and creates a kd-tree out of the gapless subsections (blocks) of the alignments. A dynamic program was then run over the kd-trees to find the maximally scoring chains of these blocks. The following matrix was used:  ACGT A90-330-236-356 C-330100-318-236 G-236-318100-330 T-356-236-33090 Chains scoring below a minimum score of "3000" were discarded; the remaining chains are displayed in this track. The linear gap matrix used with axtChain: -linearGap=medium tableSize 11 smallSize 111 position 1 2 3 11 111 2111 12111 32111 72111 152111 252111 qGap 350 425 450 600 900 2900 22900 57900 117900 217900 317900 tGap 350 425 450 600 900 2900 22900 57900 117900 217900 317900 bothGap 750 825 850 1000 1300 3300 23300 58300 118300 218300 318300 Net track Chains were derived from lastz alignments, using the methods described on the chain tracks description pages, and sorted with the highest-scoring chains in the genome ranked first. The program chainNet was then used to place the chains one at a time, trimming them as necessary to fit into sections not already covered by a higher-scoring chain. During this process, a natural hierarchy emerged in which a chain that filled a gap in a higher-scoring chain was placed underneath that chain. The program netSyntenic was used to fill in information about the relationship between higher- and lower-level chains, such as whether a lower-level chain was syntenic or inverted relative to the higher-level chain. The program netClass was then used to fill in how much of the gaps and chains contained Ns (sequencing gaps) in one or both species and how much was filled with transposons inserted before and after the two organisms diverged. Credits Lastz (previously known as blastz) was developed at Pennsylvania State University by Minmei Hou, Scott Schwartz, Zheng Zhang, and Webb Miller with advice from Ross Hardison. Lineage-specific repeats were identified by Arian Smit and his RepeatMasker program. The axtChain program was developed at the University of California at Santa Cruz by Jim Kent with advice from Webb Miller and David Haussler. The browser display and database storage of the chains and nets were created by Robert Baertsch and Jim Kent. The chainNet, netSyntenic, and netClass programs were developed at the University of California Santa Cruz by Jim Kent. References Harris, R.S. (2007) Improved pairwise alignment of genomic DNA Ph.D. Thesis, The Pennsylvania State University Chiaromonte F, Yap VB, Miller W. Scoring pairwise genomic sequence alignments. Pac Symp Biocomput. 2002:115-26. PMID: 11928468 Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D. Evolution's cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11484-9. PMID: 14500911; PMC: PMC208784 Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, Haussler D, Miller W. Human-mouse alignments with BLASTZ. Genome Res. 2003 Jan;13(1):103-7. PMID: 12529312; PMC: PMC430961 chainNetHg18Viewnet Net Human (Mar. 2006 (NCBI36/hg18)), Chain and Net Alignments Comparative Genomics netHg18 Human Net Human (Mar. 2006 (NCBI36/hg18)) Alignment net Comparative Genomics Description This track shows regions of the genome that are alignable to other genomes ("chain" subtracks) or in synteny ("net" subtracks). The alignable parts are shown with thick blocks that look like exons. Non-alignable parts between these are shown like introns. Chain Track The chain track shows alignments of human (Mar. 2006 (NCBI36/hg18)) to the lancelet genome using a gap scoring system that allows longer gaps than traditional affine gap scoring systems. It can also tolerate gaps in both human and lancelet simultaneously. These "double-sided" gaps can be caused by local inversions and overlapping deletions in both species. The chain track displays boxes joined together by either single or double lines. The boxes represent aligning regions. Single lines indicate gaps that are largely due to a deletion in the human assembly or an insertion in the lancelet assembly. Double lines represent more complex gaps that involve substantial sequence in both species. This may result from inversions, overlapping deletions, an abundance of local mutation, or an unsequenced gap in one species. In cases where multiple chains align over a particular region of the lancelet genome, the chains with single-lined gaps are often due to processed pseudogenes, while chains with double-lined gaps are more often due to paralogs and unprocessed pseudogenes. In the "pack" and "full" display modes, the individual feature names indicate the chromosome, strand, and location (in thousands) of the match for each matching alignment. Net Track The net track shows the best human/lancelet chain for every part of the lancelet genome. It is useful for finding syntenic regions, possibly orthologs, and for studying genome rearrangement. The human sequence used in this annotation is from the Mar. 2006 (NCBI36/hg18) assembly. Display Conventions and Configuration Chain Track By default, the chains to chromosome-based assemblies are colored based on which chromosome they map to in the aligning organism. To turn off the coloring, check the "off" button next to: Color track based on chromosome. To display only the chains of one chromosome in the aligning organism, enter the name of that chromosome (e.g. chr4) in box next to: Filter by chromosome. Net Track In full display mode, the top-level (level 1) chains are the largest, highest-scoring chains that span this region. In many cases gaps exist in the top-level chain. When possible, these are filled in by other chains that are displayed at level 2. The gaps in level 2 chains may be filled by level 3 chains and so forth. In the graphical display, the boxes represent ungapped alignments; the lines represent gaps. Click on a box to view detailed information about the chain as a whole; click on a line to display information about the gap. The detailed information is useful in determining the cause of the gap or, for lower level chains, the genomic rearrangement. Individual items in the display are categorized as one of four types (other than gap): Top - the best, longest match. Displayed on level 1. Syn - line-ups on the same chromosome as the gap in the level above it. Inv - a line-up on the same chromosome as the gap above it, but in the opposite orientation. NonSyn - a match to a chromosome different from the gap in the level above. Methods Chain track Transposons that have been inserted since the human/lancelet split were removed from the assemblies. The abbreviated genomes were aligned with lastz, and the transposons were added back in. The resulting alignments were converted into axt format using the lavToAxt program. The axt alignments were fed into axtChain, which organizes all alignments between a single human chromosome and a single lancelet chromosome into a group and creates a kd-tree out of the gapless subsections (blocks) of the alignments. A dynamic program was then run over the kd-trees to find the maximally scoring chains of these blocks. The following matrix was used:  ACGT A90-330-236-356 C-330100-318-236 G-236-318100-330 T-356-236-33090 Chains scoring below a minimum score of "3000" were discarded; the remaining chains are displayed in this track. The linear gap matrix used with axtChain: -linearGap=medium tableSize 11 smallSize 111 position 1 2 3 11 111 2111 12111 32111 72111 152111 252111 qGap 350 425 450 600 900 2900 22900 57900 117900 217900 317900 tGap 350 425 450 600 900 2900 22900 57900 117900 217900 317900 bothGap 750 825 850 1000 1300 3300 23300 58300 118300 218300 318300 Net track Chains were derived from lastz alignments, using the methods described on the chain tracks description pages, and sorted with the highest-scoring chains in the genome ranked first. The program chainNet was then used to place the chains one at a time, trimming them as necessary to fit into sections not already covered by a higher-scoring chain. During this process, a natural hierarchy emerged in which a chain that filled a gap in a higher-scoring chain was placed underneath that chain. The program netSyntenic was used to fill in information about the relationship between higher- and lower-level chains, such as whether a lower-level chain was syntenic or inverted relative to the higher-level chain. The program netClass was then used to fill in how much of the gaps and chains contained Ns (sequencing gaps) in one or both species and how much was filled with transposons inserted before and after the two organisms diverged. Credits Lastz (previously known as blastz) was developed at Pennsylvania State University by Minmei Hou, Scott Schwartz, Zheng Zhang, and Webb Miller with advice from Ross Hardison. Lineage-specific repeats were identified by Arian Smit and his RepeatMasker program. The axtChain program was developed at the University of California at Santa Cruz by Jim Kent with advice from Webb Miller and David Haussler. The browser display and database storage of the chains and nets were created by Robert Baertsch and Jim Kent. The chainNet, netSyntenic, and netClass programs were developed at the University of California Santa Cruz by Jim Kent. References Harris, R.S. (2007) Improved pairwise alignment of genomic DNA Ph.D. Thesis, The Pennsylvania State University Chiaromonte F, Yap VB, Miller W. Scoring pairwise genomic sequence alignments. Pac Symp Biocomput. 2002:115-26. PMID: 11928468 Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D. Evolution's cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11484-9. PMID: 14500911; PMC: PMC208784 Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, Haussler D, Miller W. Human-mouse alignments with BLASTZ. Genome Res. 2003 Jan;13(1):103-7. PMID: 12529312; PMC: PMC430961 chainNetHg18Viewchain Chain Human (Mar. 2006 (NCBI36/hg18)), Chain and Net Alignments Comparative Genomics chainHg18 Human Chain Human (Mar. 2006 (NCBI36/hg18)) Chained Alignments Comparative Genomics Description This track shows regions of the genome that are alignable to other genomes ("chain" subtracks) or in synteny ("net" subtracks). The alignable parts are shown with thick blocks that look like exons. Non-alignable parts between these are shown like introns. Chain Track The chain track shows alignments of human (Mar. 2006 (NCBI36/hg18)) to the lancelet genome using a gap scoring system that allows longer gaps than traditional affine gap scoring systems. It can also tolerate gaps in both human and lancelet simultaneously. These "double-sided" gaps can be caused by local inversions and overlapping deletions in both species. The chain track displays boxes joined together by either single or double lines. The boxes represent aligning regions. Single lines indicate gaps that are largely due to a deletion in the human assembly or an insertion in the lancelet assembly. Double lines represent more complex gaps that involve substantial sequence in both species. This may result from inversions, overlapping deletions, an abundance of local mutation, or an unsequenced gap in one species. In cases where multiple chains align over a particular region of the lancelet genome, the chains with single-lined gaps are often due to processed pseudogenes, while chains with double-lined gaps are more often due to paralogs and unprocessed pseudogenes. In the "pack" and "full" display modes, the individual feature names indicate the chromosome, strand, and location (in thousands) of the match for each matching alignment. Net Track The net track shows the best human/lancelet chain for every part of the lancelet genome. It is useful for finding syntenic regions, possibly orthologs, and for studying genome rearrangement. The human sequence used in this annotation is from the Mar. 2006 (NCBI36/hg18) assembly. Display Conventions and Configuration Chain Track By default, the chains to chromosome-based assemblies are colored based on which chromosome they map to in the aligning organism. To turn off the coloring, check the "off" button next to: Color track based on chromosome. To display only the chains of one chromosome in the aligning organism, enter the name of that chromosome (e.g. chr4) in box next to: Filter by chromosome. Net Track In full display mode, the top-level (level 1) chains are the largest, highest-scoring chains that span this region. In many cases gaps exist in the top-level chain. When possible, these are filled in by other chains that are displayed at level 2. The gaps in level 2 chains may be filled by level 3 chains and so forth. In the graphical display, the boxes represent ungapped alignments; the lines represent gaps. Click on a box to view detailed information about the chain as a whole; click on a line to display information about the gap. The detailed information is useful in determining the cause of the gap or, for lower level chains, the genomic rearrangement. Individual items in the display are categorized as one of four types (other than gap): Top - the best, longest match. Displayed on level 1. Syn - line-ups on the same chromosome as the gap in the level above it. Inv - a line-up on the same chromosome as the gap above it, but in the opposite orientation. NonSyn - a match to a chromosome different from the gap in the level above. Methods Chain track Transposons that have been inserted since the human/lancelet split were removed from the assemblies. The abbreviated genomes were aligned with lastz, and the transposons were added back in. The resulting alignments were converted into axt format using the lavToAxt program. The axt alignments were fed into axtChain, which organizes all alignments between a single human chromosome and a single lancelet chromosome into a group and creates a kd-tree out of the gapless subsections (blocks) of the alignments. A dynamic program was then run over the kd-trees to find the maximally scoring chains of these blocks. The following matrix was used:  ACGT A90-330-236-356 C-330100-318-236 G-236-318100-330 T-356-236-33090 Chains scoring below a minimum score of "3000" were discarded; the remaining chains are displayed in this track. The linear gap matrix used with axtChain: -linearGap=medium tableSize 11 smallSize 111 position 1 2 3 11 111 2111 12111 32111 72111 152111 252111 qGap 350 425 450 600 900 2900 22900 57900 117900 217900 317900 tGap 350 425 450 600 900 2900 22900 57900 117900 217900 317900 bothGap 750 825 850 1000 1300 3300 23300 58300 118300 218300 318300 Net track Chains were derived from lastz alignments, using the methods described on the chain tracks description pages, and sorted with the highest-scoring chains in the genome ranked first. The program chainNet was then used to place the chains one at a time, trimming them as necessary to fit into sections not already covered by a higher-scoring chain. During this process, a natural hierarchy emerged in which a chain that filled a gap in a higher-scoring chain was placed underneath that chain. The program netSyntenic was used to fill in information about the relationship between higher- and lower-level chains, such as whether a lower-level chain was syntenic or inverted relative to the higher-level chain. The program netClass was then used to fill in how much of the gaps and chains contained Ns (sequencing gaps) in one or both species and how much was filled with transposons inserted before and after the two organisms diverged. Credits Lastz (previously known as blastz) was developed at Pennsylvania State University by Minmei Hou, Scott Schwartz, Zheng Zhang, and Webb Miller with advice from Ross Hardison. Lineage-specific repeats were identified by Arian Smit and his RepeatMasker program. The axtChain program was developed at the University of California at Santa Cruz by Jim Kent with advice from Webb Miller and David Haussler. The browser display and database storage of the chains and nets were created by Robert Baertsch and Jim Kent. The chainNet, netSyntenic, and netClass programs were developed at the University of California Santa Cruz by Jim Kent. References Harris, R.S. (2007) Improved pairwise alignment of genomic DNA Ph.D. Thesis, The Pennsylvania State University Chiaromonte F, Yap VB, Miller W. Scoring pairwise genomic sequence alignments. Pac Symp Biocomput. 2002:115-26. PMID: 11928468 Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D. Evolution's cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11484-9. PMID: 14500911; PMC: PMC208784 Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, Haussler D, Miller W. Human-mouse alignments with BLASTZ. Genome Res. 2003 Jan;13(1):103-7. PMID: 12529312; PMC: PMC430961 chainNetGalGal3 Chicken Chain/Net Chicken (May 2006 (WUGSC 2.1/galGal3)), Chain and Net Alignments Comparative Genomics Description This track shows regions of the genome that are alignable to other genomes ("chain" subtracks) or in synteny ("net" subtracks). The alignable parts are shown with thick blocks that look like exons. Non-alignable parts between these are shown like introns. Chain Track The chain track shows alignments of chicken (May 2006 (WUGSC 2.1/galGal3)) to the lancelet genome using a gap scoring system that allows longer gaps than traditional affine gap scoring systems. It can also tolerate gaps in both chicken and lancelet simultaneously. These "double-sided" gaps can be caused by local inversions and overlapping deletions in both species. The chain track displays boxes joined together by either single or double lines. The boxes represent aligning regions. Single lines indicate gaps that are largely due to a deletion in the chicken assembly or an insertion in the lancelet assembly. Double lines represent more complex gaps that involve substantial sequence in both species. This may result from inversions, overlapping deletions, an abundance of local mutation, or an unsequenced gap in one species. In cases where multiple chains align over a particular region of the lancelet genome, the chains with single-lined gaps are often due to processed pseudogenes, while chains with double-lined gaps are more often due to paralogs and unprocessed pseudogenes. In the "pack" and "full" display modes, the individual feature names indicate the chromosome, strand, and location (in thousands) of the match for each matching alignment. Net Track The net track shows the best chicken/lancelet chain for every part of the lancelet genome. It is useful for finding syntenic regions, possibly orthologs, and for studying genome rearrangement. The chicken sequence used in this annotation is from the May 2006 (WUGSC 2.1/galGal3) assembly. Display Conventions and Configuration Chain Track By default, the chains to chromosome-based assemblies are colored based on which chromosome they map to in the aligning organism. To turn off the coloring, check the "off" button next to: Color track based on chromosome. To display only the chains of one chromosome in the aligning organism, enter the name of that chromosome (e.g. chr4) in box next to: Filter by chromosome. Net Track In full display mode, the top-level (level 1) chains are the largest, highest-scoring chains that span this region. In many cases gaps exist in the top-level chain. When possible, these are filled in by other chains that are displayed at level 2. The gaps in level 2 chains may be filled by level 3 chains and so forth. In the graphical display, the boxes represent ungapped alignments; the lines represent gaps. Click on a box to view detailed information about the chain as a whole; click on a line to display information about the gap. The detailed information is useful in determining the cause of the gap or, for lower level chains, the genomic rearrangement. Individual items in the display are categorized as one of four types (other than gap): Top - the best, longest match. Displayed on level 1. Syn - line-ups on the same chromosome as the gap in the level above it. Inv - a line-up on the same chromosome as the gap above it, but in the opposite orientation. NonSyn - a match to a chromosome different from the gap in the level above. Methods Chain track Transposons that have been inserted since the chicken/lancelet split were removed from the assemblies. The abbreviated genomes were aligned with lastz, and the transposons were added back in. The resulting alignments were converted into axt format using the lavToAxt program. The axt alignments were fed into axtChain, which organizes all alignments between a single chicken chromosome and a single lancelet chromosome into a group and creates a kd-tree out of the gapless subsections (blocks) of the alignments. A dynamic program was then run over the kd-trees to find the maximally scoring chains of these blocks. The following matrix was used:  ACGT A91-90-25-100 C-90100-100-25 G-25-100100-90 T-100-25-9091 Chains scoring below a minimum score of "5000" were discarded; the remaining chains are displayed in this track. The linear gap matrix used with axtChain: -linearGap=loose tablesize 11 smallSize 111 position 1 2 3 11 111 2111 12111 32111 72111 152111 252111 qGap 325 360 400 450 600 1100 3600 7600 15600 31600 56600 tGap 325 360 400 450 600 1100 3600 7600 15600 31600 56600 bothGap 625 660 700 750 900 1400 4000 8000 16000 32000 57000 Net track Chains were derived from lastz alignments, using the methods described on the chain tracks description pages, and sorted with the highest-scoring chains in the genome ranked first. The program chainNet was then used to place the chains one at a time, trimming them as necessary to fit into sections not already covered by a higher-scoring chain. During this process, a natural hierarchy emerged in which a chain that filled a gap in a higher-scoring chain was placed underneath that chain. The program netSyntenic was used to fill in information about the relationship between higher- and lower-level chains, such as whether a lower-level chain was syntenic or inverted relative to the higher-level chain. The program netClass was then used to fill in how much of the gaps and chains contained Ns (sequencing gaps) in one or both species and how much was filled with transposons inserted before and after the two organisms diverged. Credits Lastz (previously known as blastz) was developed at Pennsylvania State University by Minmei Hou, Scott Schwartz, Zheng Zhang, and Webb Miller with advice from Ross Hardison. Lineage-specific repeats were identified by Arian Smit and his RepeatMasker program. The axtChain program was developed at the University of California at Santa Cruz by Jim Kent with advice from Webb Miller and David Haussler. The browser display and database storage of the chains and nets were created by Robert Baertsch and Jim Kent. The chainNet, netSyntenic, and netClass programs were developed at the University of California Santa Cruz by Jim Kent. References Harris, R.S. (2007) Improved pairwise alignment of genomic DNA Ph.D. Thesis, The Pennsylvania State University Chiaromonte F, Yap VB, Miller W. Scoring pairwise genomic sequence alignments. Pac Symp Biocomput. 2002:115-26. PMID: 11928468 Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D. Evolution's cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11484-9. PMID: 14500911; PMC: PMC208784 Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, Haussler D, Miller W. Human-mouse alignments with BLASTZ. Genome Res. 2003 Jan;13(1):103-7. PMID: 12529312; PMC: PMC430961 chainNetGalGal3Viewnet Net Chicken (May 2006 (WUGSC 2.1/galGal3)), Chain and Net Alignments Comparative Genomics netGalGal3 Chicken Net Chicken (May 2006 (WUGSC 2.1/galGal3)) Alignment Net Comparative Genomics Description This track shows regions of the genome that are alignable to other genomes ("chain" subtracks) or in synteny ("net" subtracks). The alignable parts are shown with thick blocks that look like exons. Non-alignable parts between these are shown like introns. Chain Track The chain track shows alignments of chicken (May 2006 (WUGSC 2.1/galGal3)) to the lancelet genome using a gap scoring system that allows longer gaps than traditional affine gap scoring systems. It can also tolerate gaps in both chicken and lancelet simultaneously. These "double-sided" gaps can be caused by local inversions and overlapping deletions in both species. The chain track displays boxes joined together by either single or double lines. The boxes represent aligning regions. Single lines indicate gaps that are largely due to a deletion in the chicken assembly or an insertion in the lancelet assembly. Double lines represent more complex gaps that involve substantial sequence in both species. This may result from inversions, overlapping deletions, an abundance of local mutation, or an unsequenced gap in one species. In cases where multiple chains align over a particular region of the lancelet genome, the chains with single-lined gaps are often due to processed pseudogenes, while chains with double-lined gaps are more often due to paralogs and unprocessed pseudogenes. In the "pack" and "full" display modes, the individual feature names indicate the chromosome, strand, and location (in thousands) of the match for each matching alignment. Net Track The net track shows the best chicken/lancelet chain for every part of the lancelet genome. It is useful for finding syntenic regions, possibly orthologs, and for studying genome rearrangement. The chicken sequence used in this annotation is from the May 2006 (WUGSC 2.1/galGal3) assembly. Display Conventions and Configuration Chain Track By default, the chains to chromosome-based assemblies are colored based on which chromosome they map to in the aligning organism. To turn off the coloring, check the "off" button next to: Color track based on chromosome. To display only the chains of one chromosome in the aligning organism, enter the name of that chromosome (e.g. chr4) in box next to: Filter by chromosome. Net Track In full display mode, the top-level (level 1) chains are the largest, highest-scoring chains that span this region. In many cases gaps exist in the top-level chain. When possible, these are filled in by other chains that are displayed at level 2. The gaps in level 2 chains may be filled by level 3 chains and so forth. In the graphical display, the boxes represent ungapped alignments; the lines represent gaps. Click on a box to view detailed information about the chain as a whole; click on a line to display information about the gap. The detailed information is useful in determining the cause of the gap or, for lower level chains, the genomic rearrangement. Individual items in the display are categorized as one of four types (other than gap): Top - the best, longest match. Displayed on level 1. Syn - line-ups on the same chromosome as the gap in the level above it. Inv - a line-up on the same chromosome as the gap above it, but in the opposite orientation. NonSyn - a match to a chromosome different from the gap in the level above. Methods Chain track Transposons that have been inserted since the chicken/lancelet split were removed from the assemblies. The abbreviated genomes were aligned with lastz, and the transposons were added back in. The resulting alignments were converted into axt format using the lavToAxt program. The axt alignments were fed into axtChain, which organizes all alignments between a single chicken chromosome and a single lancelet chromosome into a group and creates a kd-tree out of the gapless subsections (blocks) of the alignments. A dynamic program was then run over the kd-trees to find the maximally scoring chains of these blocks. The following matrix was used:  ACGT A91-90-25-100 C-90100-100-25 G-25-100100-90 T-100-25-9091 Chains scoring below a minimum score of "5000" were discarded; the remaining chains are displayed in this track. The linear gap matrix used with axtChain: -linearGap=loose tablesize 11 smallSize 111 position 1 2 3 11 111 2111 12111 32111 72111 152111 252111 qGap 325 360 400 450 600 1100 3600 7600 15600 31600 56600 tGap 325 360 400 450 600 1100 3600 7600 15600 31600 56600 bothGap 625 660 700 750 900 1400 4000 8000 16000 32000 57000 Net track Chains were derived from lastz alignments, using the methods described on the chain tracks description pages, and sorted with the highest-scoring chains in the genome ranked first. The program chainNet was then used to place the chains one at a time, trimming them as necessary to fit into sections not already covered by a higher-scoring chain. During this process, a natural hierarchy emerged in which a chain that filled a gap in a higher-scoring chain was placed underneath that chain. The program netSyntenic was used to fill in information about the relationship between higher- and lower-level chains, such as whether a lower-level chain was syntenic or inverted relative to the higher-level chain. The program netClass was then used to fill in how much of the gaps and chains contained Ns (sequencing gaps) in one or both species and how much was filled with transposons inserted before and after the two organisms diverged. Credits Lastz (previously known as blastz) was developed at Pennsylvania State University by Minmei Hou, Scott Schwartz, Zheng Zhang, and Webb Miller with advice from Ross Hardison. Lineage-specific repeats were identified by Arian Smit and his RepeatMasker program. The axtChain program was developed at the University of California at Santa Cruz by Jim Kent with advice from Webb Miller and David Haussler. The browser display and database storage of the chains and nets were created by Robert Baertsch and Jim Kent. The chainNet, netSyntenic, and netClass programs were developed at the University of California Santa Cruz by Jim Kent. References Harris, R.S. (2007) Improved pairwise alignment of genomic DNA Ph.D. Thesis, The Pennsylvania State University Chiaromonte F, Yap VB, Miller W. Scoring pairwise genomic sequence alignments. Pac Symp Biocomput. 2002:115-26. PMID: 11928468 Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D. Evolution's cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11484-9. PMID: 14500911; PMC: PMC208784 Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, Haussler D, Miller W. Human-mouse alignments with BLASTZ. Genome Res. 2003 Jan;13(1):103-7. PMID: 12529312; PMC: PMC430961 chainNetGalGal3Viewchain Chain Chicken (May 2006 (WUGSC 2.1/galGal3)), Chain and Net Alignments Comparative Genomics chainGalGal3 Chicken Chain Chicken (May 2006 (WUGSC 2.1/galGal3)) Chained Alignments Comparative Genomics Description This track shows regions of the genome that are alignable to other genomes ("chain" subtracks) or in synteny ("net" subtracks). The alignable parts are shown with thick blocks that look like exons. Non-alignable parts between these are shown like introns. Chain Track The chain track shows alignments of chicken (May 2006 (WUGSC 2.1/galGal3)) to the lancelet genome using a gap scoring system that allows longer gaps than traditional affine gap scoring systems. It can also tolerate gaps in both chicken and lancelet simultaneously. These "double-sided" gaps can be caused by local inversions and overlapping deletions in both species. The chain track displays boxes joined together by either single or double lines. The boxes represent aligning regions. Single lines indicate gaps that are largely due to a deletion in the chicken assembly or an insertion in the lancelet assembly. Double lines represent more complex gaps that involve substantial sequence in both species. This may result from inversions, overlapping deletions, an abundance of local mutation, or an unsequenced gap in one species. In cases where multiple chains align over a particular region of the lancelet genome, the chains with single-lined gaps are often due to processed pseudogenes, while chains with double-lined gaps are more often due to paralogs and unprocessed pseudogenes. In the "pack" and "full" display modes, the individual feature names indicate the chromosome, strand, and location (in thousands) of the match for each matching alignment. Net Track The net track shows the best chicken/lancelet chain for every part of the lancelet genome. It is useful for finding syntenic regions, possibly orthologs, and for studying genome rearrangement. The chicken sequence used in this annotation is from the May 2006 (WUGSC 2.1/galGal3) assembly. Display Conventions and Configuration Chain Track By default, the chains to chromosome-based assemblies are colored based on which chromosome they map to in the aligning organism. To turn off the coloring, check the "off" button next to: Color track based on chromosome. To display only the chains of one chromosome in the aligning organism, enter the name of that chromosome (e.g. chr4) in box next to: Filter by chromosome. Net Track In full display mode, the top-level (level 1) chains are the largest, highest-scoring chains that span this region. In many cases gaps exist in the top-level chain. When possible, these are filled in by other chains that are displayed at level 2. The gaps in level 2 chains may be filled by level 3 chains and so forth. In the graphical display, the boxes represent ungapped alignments; the lines represent gaps. Click on a box to view detailed information about the chain as a whole; click on a line to display information about the gap. The detailed information is useful in determining the cause of the gap or, for lower level chains, the genomic rearrangement. Individual items in the display are categorized as one of four types (other than gap): Top - the best, longest match. Displayed on level 1. Syn - line-ups on the same chromosome as the gap in the level above it. Inv - a line-up on the same chromosome as the gap above it, but in the opposite orientation. NonSyn - a match to a chromosome different from the gap in the level above. Methods Chain track Transposons that have been inserted since the chicken/lancelet split were removed from the assemblies. The abbreviated genomes were aligned with lastz, and the transposons were added back in. The resulting alignments were converted into axt format using the lavToAxt program. The axt alignments were fed into axtChain, which organizes all alignments between a single chicken chromosome and a single lancelet chromosome into a group and creates a kd-tree out of the gapless subsections (blocks) of the alignments. A dynamic program was then run over the kd-trees to find the maximally scoring chains of these blocks. The following matrix was used:  ACGT A91-90-25-100 C-90100-100-25 G-25-100100-90 T-100-25-9091 Chains scoring below a minimum score of "5000" were discarded; the remaining chains are displayed in this track. The linear gap matrix used with axtChain: -linearGap=loose tablesize 11 smallSize 111 position 1 2 3 11 111 2111 12111 32111 72111 152111 252111 qGap 325 360 400 450 600 1100 3600 7600 15600 31600 56600 tGap 325 360 400 450 600 1100 3600 7600 15600 31600 56600 bothGap 625 660 700 750 900 1400 4000 8000 16000 32000 57000 Net track Chains were derived from lastz alignments, using the methods described on the chain tracks description pages, and sorted with the highest-scoring chains in the genome ranked first. The program chainNet was then used to place the chains one at a time, trimming them as necessary to fit into sections not already covered by a higher-scoring chain. During this process, a natural hierarchy emerged in which a chain that filled a gap in a higher-scoring chain was placed underneath that chain. The program netSyntenic was used to fill in information about the relationship between higher- and lower-level chains, such as whether a lower-level chain was syntenic or inverted relative to the higher-level chain. The program netClass was then used to fill in how much of the gaps and chains contained Ns (sequencing gaps) in one or both species and how much was filled with transposons inserted before and after the two organisms diverged. Credits Lastz (previously known as blastz) was developed at Pennsylvania State University by Minmei Hou, Scott Schwartz, Zheng Zhang, and Webb Miller with advice from Ross Hardison. Lineage-specific repeats were identified by Arian Smit and his RepeatMasker program. The axtChain program was developed at the University of California at Santa Cruz by Jim Kent with advice from Webb Miller and David Haussler. The browser display and database storage of the chains and nets were created by Robert Baertsch and Jim Kent. The chainNet, netSyntenic, and netClass programs were developed at the University of California Santa Cruz by Jim Kent. References Harris, R.S. (2007) Improved pairwise alignment of genomic DNA Ph.D. Thesis, The Pennsylvania State University Chiaromonte F, Yap VB, Miller W. Scoring pairwise genomic sequence alignments. Pac Symp Biocomput. 2002:115-26. PMID: 11928468 Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D. Evolution's cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11484-9. PMID: 14500911; PMC: PMC208784 Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, Haussler D, Miller W. Human-mouse alignments with BLASTZ. Genome Res. 2003 Jan;13(1):103-7. PMID: 12529312; PMC: PMC430961 chainNetMm9 Mouse Chain/Net Mouse (July 2007 (NCBI37/mm9)), Chain and Net Alignments Comparative Genomics Description This track shows regions of the genome that are alignable to other genomes ("chain" subtracks) or in synteny ("net" subtracks). The alignable parts are shown with thick blocks that look like exons. Non-alignable parts between these are shown like introns. Chain Track The chain track shows alignments of mouse (July 2007 (NCBI37/mm9)) to the lancelet genome using a gap scoring system that allows longer gaps than traditional affine gap scoring systems. It can also tolerate gaps in both mouse and lancelet simultaneously. These "double-sided" gaps can be caused by local inversions and overlapping deletions in both species. The chain track displays boxes joined together by either single or double lines. The boxes represent aligning regions. Single lines indicate gaps that are largely due to a deletion in the mouse assembly or an insertion in the lancelet assembly. Double lines represent more complex gaps that involve substantial sequence in both species. This may result from inversions, overlapping deletions, an abundance of local mutation, or an unsequenced gap in one species. In cases where multiple chains align over a particular region of the lancelet genome, the chains with single-lined gaps are often due to processed pseudogenes, while chains with double-lined gaps are more often due to paralogs and unprocessed pseudogenes. In the "pack" and "full" display modes, the individual feature names indicate the chromosome, strand, and location (in thousands) of the match for each matching alignment. Net Track The net track shows the best mouse/lancelet chain for every part of the lancelet genome. It is useful for finding syntenic regions, possibly orthologs, and for studying genome rearrangement. The mouse sequence used in this annotation is from the July 2007 (NCBI37/mm9) assembly. Display Conventions and Configuration Chain Track By default, the chains to chromosome-based assemblies are colored based on which chromosome they map to in the aligning organism. To turn off the coloring, check the "off" button next to: Color track based on chromosome. To display only the chains of one chromosome in the aligning organism, enter the name of that chromosome (e.g. chr4) in box next to: Filter by chromosome. Net Track In full display mode, the top-level (level 1) chains are the largest, highest-scoring chains that span this region. In many cases gaps exist in the top-level chain. When possible, these are filled in by other chains that are displayed at level 2. The gaps in level 2 chains may be filled by level 3 chains and so forth. In the graphical display, the boxes represent ungapped alignments; the lines represent gaps. Click on a box to view detailed information about the chain as a whole; click on a line to display information about the gap. The detailed information is useful in determining the cause of the gap or, for lower level chains, the genomic rearrangement. Individual items in the display are categorized as one of four types (other than gap): Top - the best, longest match. Displayed on level 1. Syn - line-ups on the same chromosome as the gap in the level above it. Inv - a line-up on the same chromosome as the gap above it, but in the opposite orientation. NonSyn - a match to a chromosome different from the gap in the level above. Methods Chain track Transposons that have been inserted since the mouse/lancelet split were removed from the assemblies. The abbreviated genomes were aligned with lastz, and the transposons were added back in. The resulting alignments were converted into axt format using the lavToAxt program. The axt alignments were fed into axtChain, which organizes all alignments between a single mouse chromosome and a single lancelet chromosome into a group and creates a kd-tree out of the gapless subsections (blocks) of the alignments. A dynamic program was then run over the kd-trees to find the maximally scoring chains of these blocks. The following matrix was used:  ACGT A91-90-25-100 C-90100-100-25 G-25-100100-90 T-100-25-9091 Chains scoring below a minimum score of "5000" were discarded; the remaining chains are displayed in this track. The linear gap matrix used with axtChain: -linearGap=loose tablesize 11 smallSize 111 position 1 2 3 11 111 2111 12111 32111 72111 152111 252111 qGap 325 360 400 450 600 1100 3600 7600 15600 31600 56600 tGap 325 360 400 450 600 1100 3600 7600 15600 31600 56600 bothGap 625 660 700 750 900 1400 4000 8000 16000 32000 57000 Net track Chains were derived from lastz alignments, using the methods described on the chain tracks description pages, and sorted with the highest-scoring chains in the genome ranked first. The program chainNet was then used to place the chains one at a time, trimming them as necessary to fit into sections not already covered by a higher-scoring chain. During this process, a natural hierarchy emerged in which a chain that filled a gap in a higher-scoring chain was placed underneath that chain. The program netSyntenic was used to fill in information about the relationship between higher- and lower-level chains, such as whether a lower-level chain was syntenic or inverted relative to the higher-level chain. The program netClass was then used to fill in how much of the gaps and chains contained Ns (sequencing gaps) in one or both species and how much was filled with transposons inserted before and after the two organisms diverged. Credits Lastz (previously known as blastz) was developed at Pennsylvania State University by Minmei Hou, Scott Schwartz, Zheng Zhang, and Webb Miller with advice from Ross Hardison. Lineage-specific repeats were identified by Arian Smit and his RepeatMasker program. The axtChain program was developed at the University of California at Santa Cruz by Jim Kent with advice from Webb Miller and David Haussler. The browser display and database storage of the chains and nets were created by Robert Baertsch and Jim Kent. The chainNet, netSyntenic, and netClass programs were developed at the University of California Santa Cruz by Jim Kent. References Harris, R.S. (2007) Improved pairwise alignment of genomic DNA Ph.D. Thesis, The Pennsylvania State University Chiaromonte F, Yap VB, Miller W. Scoring pairwise genomic sequence alignments. Pac Symp Biocomput. 2002:115-26. PMID: 11928468 Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D. Evolution's cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11484-9. PMID: 14500911; PMC: PMC208784 Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, Haussler D, Miller W. Human-mouse alignments with BLASTZ. Genome Res. 2003 Jan;13(1):103-7. PMID: 12529312; PMC: PMC430961 chainNetMm9Viewnet Net Mouse (July 2007 (NCBI37/mm9)), Chain and Net Alignments Comparative Genomics netMm9 Mouse Net Mouse (July 2007 (NCBI37/mm9)) Alignment Net Comparative Genomics Description This track shows regions of the genome that are alignable to other genomes ("chain" subtracks) or in synteny ("net" subtracks). The alignable parts are shown with thick blocks that look like exons. Non-alignable parts between these are shown like introns. Chain Track The chain track shows alignments of mouse (July 2007 (NCBI37/mm9)) to the lancelet genome using a gap scoring system that allows longer gaps than traditional affine gap scoring systems. It can also tolerate gaps in both mouse and lancelet simultaneously. These "double-sided" gaps can be caused by local inversions and overlapping deletions in both species. The chain track displays boxes joined together by either single or double lines. The boxes represent aligning regions. Single lines indicate gaps that are largely due to a deletion in the mouse assembly or an insertion in the lancelet assembly. Double lines represent more complex gaps that involve substantial sequence in both species. This may result from inversions, overlapping deletions, an abundance of local mutation, or an unsequenced gap in one species. In cases where multiple chains align over a particular region of the lancelet genome, the chains with single-lined gaps are often due to processed pseudogenes, while chains with double-lined gaps are more often due to paralogs and unprocessed pseudogenes. In the "pack" and "full" display modes, the individual feature names indicate the chromosome, strand, and location (in thousands) of the match for each matching alignment. Net Track The net track shows the best mouse/lancelet chain for every part of the lancelet genome. It is useful for finding syntenic regions, possibly orthologs, and for studying genome rearrangement. The mouse sequence used in this annotation is from the July 2007 (NCBI37/mm9) assembly. Display Conventions and Configuration Chain Track By default, the chains to chromosome-based assemblies are colored based on which chromosome they map to in the aligning organism. To turn off the coloring, check the "off" button next to: Color track based on chromosome. To display only the chains of one chromosome in the aligning organism, enter the name of that chromosome (e.g. chr4) in box next to: Filter by chromosome. Net Track In full display mode, the top-level (level 1) chains are the largest, highest-scoring chains that span this region. In many cases gaps exist in the top-level chain. When possible, these are filled in by other chains that are displayed at level 2. The gaps in level 2 chains may be filled by level 3 chains and so forth. In the graphical display, the boxes represent ungapped alignments; the lines represent gaps. Click on a box to view detailed information about the chain as a whole; click on a line to display information about the gap. The detailed information is useful in determining the cause of the gap or, for lower level chains, the genomic rearrangement. Individual items in the display are categorized as one of four types (other than gap): Top - the best, longest match. Displayed on level 1. Syn - line-ups on the same chromosome as the gap in the level above it. Inv - a line-up on the same chromosome as the gap above it, but in the opposite orientation. NonSyn - a match to a chromosome different from the gap in the level above. Methods Chain track Transposons that have been inserted since the mouse/lancelet split were removed from the assemblies. The abbreviated genomes were aligned with lastz, and the transposons were added back in. The resulting alignments were converted into axt format using the lavToAxt program. The axt alignments were fed into axtChain, which organizes all alignments between a single mouse chromosome and a single lancelet chromosome into a group and creates a kd-tree out of the gapless subsections (blocks) of the alignments. A dynamic program was then run over the kd-trees to find the maximally scoring chains of these blocks. The following matrix was used:  ACGT A91-90-25-100 C-90100-100-25 G-25-100100-90 T-100-25-9091 Chains scoring below a minimum score of "5000" were discarded; the remaining chains are displayed in this track. The linear gap matrix used with axtChain: -linearGap=loose tablesize 11 smallSize 111 position 1 2 3 11 111 2111 12111 32111 72111 152111 252111 qGap 325 360 400 450 600 1100 3600 7600 15600 31600 56600 tGap 325 360 400 450 600 1100 3600 7600 15600 31600 56600 bothGap 625 660 700 750 900 1400 4000 8000 16000 32000 57000 Net track Chains were derived from lastz alignments, using the methods described on the chain tracks description pages, and sorted with the highest-scoring chains in the genome ranked first. The program chainNet was then used to place the chains one at a time, trimming them as necessary to fit into sections not already covered by a higher-scoring chain. During this process, a natural hierarchy emerged in which a chain that filled a gap in a higher-scoring chain was placed underneath that chain. The program netSyntenic was used to fill in information about the relationship between higher- and lower-level chains, such as whether a lower-level chain was syntenic or inverted relative to the higher-level chain. The program netClass was then used to fill in how much of the gaps and chains contained Ns (sequencing gaps) in one or both species and how much was filled with transposons inserted before and after the two organisms diverged. Credits Lastz (previously known as blastz) was developed at Pennsylvania State University by Minmei Hou, Scott Schwartz, Zheng Zhang, and Webb Miller with advice from Ross Hardison. Lineage-specific repeats were identified by Arian Smit and his RepeatMasker program. The axtChain program was developed at the University of California at Santa Cruz by Jim Kent with advice from Webb Miller and David Haussler. The browser display and database storage of the chains and nets were created by Robert Baertsch and Jim Kent. The chainNet, netSyntenic, and netClass programs were developed at the University of California Santa Cruz by Jim Kent. References Harris, R.S. (2007) Improved pairwise alignment of genomic DNA Ph.D. Thesis, The Pennsylvania State University Chiaromonte F, Yap VB, Miller W. Scoring pairwise genomic sequence alignments. Pac Symp Biocomput. 2002:115-26. PMID: 11928468 Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D. Evolution's cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11484-9. PMID: 14500911; PMC: PMC208784 Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, Haussler D, Miller W. Human-mouse alignments with BLASTZ. Genome Res. 2003 Jan;13(1):103-7. PMID: 12529312; PMC: PMC430961 chainNetMm9Viewchain Chain Mouse (July 2007 (NCBI37/mm9)), Chain and Net Alignments Comparative Genomics chainMm9 Mouse Chain Mouse (July 2007 (NCBI37/mm9)) Chained Alignments Comparative Genomics Description This track shows regions of the genome that are alignable to other genomes ("chain" subtracks) or in synteny ("net" subtracks). The alignable parts are shown with thick blocks that look like exons. Non-alignable parts between these are shown like introns. Chain Track The chain track shows alignments of mouse (July 2007 (NCBI37/mm9)) to the lancelet genome using a gap scoring system that allows longer gaps than traditional affine gap scoring systems. It can also tolerate gaps in both mouse and lancelet simultaneously. These "double-sided" gaps can be caused by local inversions and overlapping deletions in both species. The chain track displays boxes joined together by either single or double lines. The boxes represent aligning regions. Single lines indicate gaps that are largely due to a deletion in the mouse assembly or an insertion in the lancelet assembly. Double lines represent more complex gaps that involve substantial sequence in both species. This may result from inversions, overlapping deletions, an abundance of local mutation, or an unsequenced gap in one species. In cases where multiple chains align over a particular region of the lancelet genome, the chains with single-lined gaps are often due to processed pseudogenes, while chains with double-lined gaps are more often due to paralogs and unprocessed pseudogenes. In the "pack" and "full" display modes, the individual feature names indicate the chromosome, strand, and location (in thousands) of the match for each matching alignment. Net Track The net track shows the best mouse/lancelet chain for every part of the lancelet genome. It is useful for finding syntenic regions, possibly orthologs, and for studying genome rearrangement. The mouse sequence used in this annotation is from the July 2007 (NCBI37/mm9) assembly. Display Conventions and Configuration Chain Track By default, the chains to chromosome-based assemblies are colored based on which chromosome they map to in the aligning organism. To turn off the coloring, check the "off" button next to: Color track based on chromosome. To display only the chains of one chromosome in the aligning organism, enter the name of that chromosome (e.g. chr4) in box next to: Filter by chromosome. Net Track In full display mode, the top-level (level 1) chains are the largest, highest-scoring chains that span this region. In many cases gaps exist in the top-level chain. When possible, these are filled in by other chains that are displayed at level 2. The gaps in level 2 chains may be filled by level 3 chains and so forth. In the graphical display, the boxes represent ungapped alignments; the lines represent gaps. Click on a box to view detailed information about the chain as a whole; click on a line to display information about the gap. The detailed information is useful in determining the cause of the gap or, for lower level chains, the genomic rearrangement. Individual items in the display are categorized as one of four types (other than gap): Top - the best, longest match. Displayed on level 1. Syn - line-ups on the same chromosome as the gap in the level above it. Inv - a line-up on the same chromosome as the gap above it, but in the opposite orientation. NonSyn - a match to a chromosome different from the gap in the level above. Methods Chain track Transposons that have been inserted since the mouse/lancelet split were removed from the assemblies. The abbreviated genomes were aligned with lastz, and the transposons were added back in. The resulting alignments were converted into axt format using the lavToAxt program. The axt alignments were fed into axtChain, which organizes all alignments between a single mouse chromosome and a single lancelet chromosome into a group and creates a kd-tree out of the gapless subsections (blocks) of the alignments. A dynamic program was then run over the kd-trees to find the maximally scoring chains of these blocks. The following matrix was used:  ACGT A91-90-25-100 C-90100-100-25 G-25-100100-90 T-100-25-9091 Chains scoring below a minimum score of "5000" were discarded; the remaining chains are displayed in this track. The linear gap matrix used with axtChain: -linearGap=loose tablesize 11 smallSize 111 position 1 2 3 11 111 2111 12111 32111 72111 152111 252111 qGap 325 360 400 450 600 1100 3600 7600 15600 31600 56600 tGap 325 360 400 450 600 1100 3600 7600 15600 31600 56600 bothGap 625 660 700 750 900 1400 4000 8000 16000 32000 57000 Net track Chains were derived from lastz alignments, using the methods described on the chain tracks description pages, and sorted with the highest-scoring chains in the genome ranked first. The program chainNet was then used to place the chains one at a time, trimming them as necessary to fit into sections not already covered by a higher-scoring chain. During this process, a natural hierarchy emerged in which a chain that filled a gap in a higher-scoring chain was placed underneath that chain. The program netSyntenic was used to fill in information about the relationship between higher- and lower-level chains, such as whether a lower-level chain was syntenic or inverted relative to the higher-level chain. The program netClass was then used to fill in how much of the gaps and chains contained Ns (sequencing gaps) in one or both species and how much was filled with transposons inserted before and after the two organisms diverged. Credits Lastz (previously known as blastz) was developed at Pennsylvania State University by Minmei Hou, Scott Schwartz, Zheng Zhang, and Webb Miller with advice from Ross Hardison. Lineage-specific repeats were identified by Arian Smit and his RepeatMasker program. The axtChain program was developed at the University of California at Santa Cruz by Jim Kent with advice from Webb Miller and David Haussler. The browser display and database storage of the chains and nets were created by Robert Baertsch and Jim Kent. The chainNet, netSyntenic, and netClass programs were developed at the University of California Santa Cruz by Jim Kent. References Harris, R.S. (2007) Improved pairwise alignment of genomic DNA Ph.D. Thesis, The Pennsylvania State University Chiaromonte F, Yap VB, Miller W. Scoring pairwise genomic sequence alignments. Pac Symp Biocomput. 2002:115-26. PMID: 11928468 Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D. Evolution's cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11484-9. PMID: 14500911; PMC: PMC208784 Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, Haussler D, Miller W. Human-mouse alignments with BLASTZ. Genome Res. 2003 Jan;13(1):103-7. PMID: 12529312; PMC: PMC430961